
 1

Extending SQL’s Grant Operation to Limit Privileges

Arnon Rosenthal, Edward Sciore
MITRE Corporation and Boston College

Abstract: Privileges in standard SQL are unconditional, forcing the grantor to trust the
recipient’s discretion completely. We propose an extension to the SQL
grant/revoke security model that allows a grantor to impose limitations on how
the received privilege may be used. This extension also has a non-traditional
implication for view security. Although our examples are from DBMSs, the
results (other than the treatment of views) apply to arbitrary sets of privileges,
and to systems without a query language.

keywords: Access controls, SQL, limited privilege, Grant/Revoke

1. INTRODUCTION

 Recent database security research has had distressingly little influence on
DBMS vendors. The SQL security model has had few extensions in the past
20 years, except for the recent addition of role-based access controls. This
paper extends SQL grant/revoke semantics to include a privilege-limitation
mechanism. Our goal is to present a model which has a small number of new
constructs (and thus has a reasonable chance at vendor implementation and
adoption), but covers significant unmet security needs.

In standard SQL, a user who has a privilege is able to use it in any
circumstance. By attaching limitation predicates to a grant, we refine this “all
or nothing” mechanism. For example, a limitation predicate may restrict a
command to certain days or hours, to members or non-members of certain
groups, to users above a certain rank, to tables above a threshold size, or to
requests that are received along a trusted path.

 2

Limitations seem particularly important in large enterprise or multi-enterprise
systems, where it may be difficult to impose sanctions for improper use of a
privilege. They also can reduce the scope for damage by an intruder who
misuses legitimate users’ privileges.

Our privilege limitation model is motivated by two principles:
• The system should have a unified, flexible means of limiting privileges,

rather than multiple overlapping mechanisms.
• The ability to grant (and to limit grants of others) should respect the

natural chains of authority.

The first principle implies that “revoking a privilege” and “imposing
additional limits on an existing grant” are facets of the same concept. For
example, imposing a limitation predicate of false should be equivalent to
revoking the privilege. More generally, modifying the predicate of an existing
grant should be equivalent to granting the privilege with the new predicate
and revoking the old one. We thus aim to simplify [Bert99], which has
separate treatments for SQL-like cascading revoke of entire privileges
(without reactivation) and negative authorizations (reactivate-able partial
limitations, without cascade).

The second principle guides how grant authority is passed. A user, when
granting a privilege, must pass on at least as many limitations as he himself
has. Moreover, by modifying the limitations on an existing grant G, a user
can propagate those modifications to all grants emanating from G. For
example, the creator of a table in a distributed system might authorize remote
administrators to grant access to their users, subject to some general
limitations; these administrators might further limit access by individual
users, as appropriate for each site. If the creator subsequently decides that
additional limitations are necessary, he only needs to modify his grants to the
remote administrators.

The second principle also implies that a subject x can limit only those grants
that emanate from a grant he has made. If user y has received grant authority
independently of x, then x cannot restrict y’s use of that power. To see the
need for this principle, imagine that the “Vote” privilege has been granted
(with grant option) to the head of each United Nations delegation. Imagine the
denial-of-service risk if, as in [Bert99], each could impose limitations on
others.

 3

Section 2 describes the principles that underly our approach, and extends SQL
grant syntax to allow limitation predicates. Section 3 defines and illustrates
the semantics of predicate-limited grants. Section 4 extends the theory to
views. Section 5 briefly shows how our model addresses many of the needs
perceived in previous work. Section 6 summarizes and presents open research
problems.

2. ACCESS CONTROL BASICS

We present our new model gradually. In this section we state the SQL
model in terminology that will be useful in the general case. We also show
how SQL grants are a special case of limited grants.

A subject is a user, group, or role. We treat each subject as atomic; inheritance
among subjects (e.g., from a group to its members) is left for future research.

A database object is a portion of the database that requires security control,
such as a table or procedure. Each database object has a set of operations. For
example, table T will have operations such as “insert into T”, “select from T”,
etc.

There are two kinds of action associated with an operation: executing the
operation, and granting an authorization for it. A subject issues a command to
tell the system to perform an action.

Standard SQL has two forms of the grant command. The first form,

grant θ to s
authorizes s to perform execute commands for operation θ. The second form,

grant θ to s with grant option
authorizes s to perform both execute and grant commands for θ.

To specify grants with limitations, we extend the syntax to include two
(optional) predicates:

grant θ to s [executeif P1] [grantif P2]
P1, called the execute-predicate (or exec_pred) of the grant, restricts the
conditions under which subject s can execute operation θ. P2, the
grantonward-predicate (or gr_pred) of the grant, restricts the conditions
under which s can grant θ onward to others.

 4

Each operation θ has an authorization graph, a rooted labeled digraph that
represents the current (non-revoked) grants for θ. We denote it AGθ, or just
AG if θ is implied. The graph has one node for each subject; the root node
corresponds to the creator of θ. There is one edge eG for each unrevoked grant
command G (and we refer interchangeably to G or eG); a grant by s1 to s2
corresponds to an edge from node s1 to s2. Edge eG is labeled with G’s two
predicates.

A chain to s is an acyclic path C ≡ <G1,…,Gn> in AG such that s1 is the root,
each Gi goes from si to si+1, and sn+1 is s. By convention, the predicates
associated with Gi are denoted gr_predi and exec_predi.

In the general case, G’s predicates can reference G’s command state (as
discussed in Section 3). In the special case of grants in standard SQL, the
exec_pred P1 is always the constant true (that is, no restriction applied during
execution), and the gr_pred P2 is either false (if no grant option) or true (if
with grant option). We call AG a SQL authorization graph if every
exec_pred is the constant predicate true and every gr_pred is one of {true,
false}.

The authorization graph AG determines whether a subject s is allowed to
perform a command. In particular, AG must have a chain to s that justifies
performing the command. The general definition of justification appears in
Section 3. In the special case of standard SQL, a chain justifies a grant
command if all its edges have the grant option; a chain justifies an execute
command if all its edges (except possibly the last) have the grant option.
More formally:

Definition (for SQL grants): Let C ≡ <G1,…,Gn> be a chain to s.
• C is SQL-valid if {gr_predi | i = 1, …,n-1} are all true. An edge is

SQL-valid if it is part of a SQL-valid chain.
• If C is SQL-valid, then C is said to SQL-justfy execute commands.
• If C is SQL-valid and gr_predn is true, then C is said to SQL-justify

grant commands.

There are two purposes to these rather elaborate formalizations of a simple
concept. First, validity becomes non-trivial when we include general
limitation predicates, and we wish to introduce the terminology early.
Second, chains (and hence edges) can become invalid what a grant is revoked.
In this case, it is the responsibility of the system to automatically revoke all
invalid edges.

 5

SQL grants correspond naturally to SQL authorization graphs. That is, if
every edge in AG came from a SQL grant, then the graph is an SQL
authorization graph. Also, when revoke deletes edges from a SQL
authorization graph, the result is still a SQL authorization graph. Section 3.7
will show that our general concepts of validity and justification reduce to the
above, on SQL authorization graphs.

3. PREDICATE-LIMITED GRANTS

Section 2 introduced authorization graphs, and defined, for the special case
of SQL (unrestricted) grants, how valid chains can justify commands from a
subject. This section considers the general case. In particular, justification
becomes command-specific – a chain can justify a command only if the
command’s state satisfies the appropriate limitation predicates. Definitions
are given in Sections 3.1 through 3.5. Section 3.6 considers workarounds for
an implementation difficulty that does not arise in standard SQL. Section 3.7
shows that we cleanly extend SQL semantics.

3.1 Command States

Each command has an associated state, which consists of:
• values for environment variables at the time the command was issued;
• the contents of the database at the time the command was issued; and
• values for the arguments of the command.

Example environment variables include $USER (the subject performing the
command), $TIME (the time of day when the command was submitted),
$LOCATION (from which the command was submitted), $AUTHENTICITY
(the certainty that the requestor is authentic), $TRUSTEDPATH (whether the
command arrived over a secure connection), and $GLOBALSTATUS (e.g.,
whether the system is in “emergency mode”).

Example argument values are $NEW_TUPLE (for insert and modify
commands), $OLD_TUPLE (for modify), and $GRANTEE (for grant
commands).

Interesting portions of the database state include group and role memberships
(is this worker on the night shift?), local status (is a particular patient in

 6

emergency mode?), and cardinality (are the tables underlying an aggregate
view large enough to preserve anonymity?).

3.2 Limitation Predicates

A limitation predicate is a Boolean function without side effects. The
inputs to this function are references to a command state – arguments,
environmental variables, and database contents. If P is a limitation predicate
and C is a command, we write P(C) to denote the truth value of P given inputs
from the state of C.

We do not propose a particular syntax for predicates. For a DBMS, SQL-like
expressions (with embedded environment variables and functions) seem
appropriate.

Example. A predicate that evaluates to true if the time of the command is
during normal working hours or if the subject works the night shift:

($TIME between <8am, 6pm>) or ($USER in NightShift)

Example. A predicate that evaluates to false if the grant command is between
a particular pair of users:

not ($USER = Boris and $GRANTEE = Natasha)

Example. A predicate that restricts a user from inserting high-priced tuples
into a table:

($NEW_TUPLE.Price < 100)

3.3 Motivating Examples

Suppose the creator of table Items issues the following grant G1:
grant insert on Items to joe
executeif ($TIME between <8am, 6pm>)
grantif ($USER in Manager) and (not $GRANTEE =

mary)
Let θ be the operation “insert on Items”. Subject joe is allowed to execute θ
only between 8am and 6pm. Joe is allowed to grant θ only when he is in the
Manager role, and the (potential) grantee is not mary.

In the above grant G1, the table creator (who has unlimited authority on its
operations) issued the grant, and so Joe’s privileges are limited exactly by the

 7

specified predicates. Now suppose that Joe issues the following grant G2
while he is a manager:

grant insert on Items to amy
executeif $DAY = monday
grantif $TRUSTEDPATH

We first note that Joe was allowed to issue G2, because he was a manager at
the time of the grant, and the grantee is Amy, not Mary. Now suppose that
after issuing G2, Joe is removed from the Manager role. Although Joe is no
longer able to issue grant commands, grant G2 will not be invalidated – G1’s
predicates are evaluated using the state of G2, which is taken from the time the
command was issued.

We next consider what privileges Amy has. Since Joe cannot give Amy
fewer restrictions than he has, his restrictions must be added to those of G2.
Thus Amy’s effective exec_pred is ($TIME between <8am, 6pm>) and
($DAY=monday), and her effective gr_pred is ($USER in Manager) and (not
$GRANTEE = sue) and ($TRUSTEDPATH).

3.4 Semantics

As before, and throughout this section, let C =<G1,…,Gn> denote a chain
to subject s. Each Gi has predicates gr_predi and exec_predi.

Definition (general case for grants):
• C is valid if n=1 (that is, C consists of a single edge from the root).
• C is valid if for each i, the initial subchain <G1,…Gi-1> justifies Gi.
• C justifies a grant G from s if C is valid and for each edge Gk in the

chain, gr_predk(G) = true.

This definition has a subtle mutual recursion. The following theorem
provides an alternative characterization.

Theorem 1: C is valid iff for each Gj, for all its predecessors k<j, gr_predk(Gj)
= true.

Definition: An edge G is valid if it is justified by some chain. An
authorization graph is valid if all its edges are valid.

Theorem 2: In a valid authorization graph, all nodes with outgoing edges
have at least one incoming valid chain.

Definition (general case for execution): C justifies an execution command E
if C is valid and for each edge Gk in the chain, exec_predk(G) = true.

A grant G with an exec_pred of false is useless, regardless of the gr_pred. The
grant authorization can be passed on to others, but the effective exec_pred
along any chain involving G will be false, and thus the operation can never be
executed.

3.5 An Example to Illustrate the Subtleties

Privileges are passed along valid chains, each of which effectively carries
a pair of predicates, the conjunction of its gr_preds and the conjunction of its
exec_preds. Even in a valid graph, some chains can be invalid, and one cannot
then use them to justify commands. To illustrate this, consider the following
authorization graph:

The graph depicts two gr
authorization but unlimite
unlimited execution authori
is issued at midnight. To un
the valid chains.

midnight]

8 6

Each chain with a single edg
because <G1> justifies G3 (
not valid, because G3 is no
$time=midnight. Hence, com
An execution command by z
from <G1, G3>, i.e., arrived
issued at 10am, then <G2, G
z would be true.)

3.6 Maintaining V

To evaluate incoming c
valid. Since grants’ states
predicate just once, at som
 G1: ($trustedpath,
ants from x to y: G1 gives
d grantonward authorizatio

zation but limited grantonwar
derstand the privileges z holds

)

e is valid, i.e., <G1> and <G2
since gr_pred1 is the constan
t justified by <G2>, because

mands by z can be justified
 can be justified only if it sati

 with $trustedpath=true. (If G
3> would be valid, and the effe

 8

alidity

ommands, one needs to know
do not change, one can eva
e time after the grant state i
[issued at
 limited execu
n; and G2 gi
d authorization.
, one must cons

>. <G1, G3> is v
t true). <G2, G3>
the state of G3

 only by <G1, G
sfies the exec_pr

3 had instead b
ctive exec_pred

 which chains
luate each relev
s created. When
G2: (true, $time between
tion
ves
 G3
ider

alid
 is

has
3>.
eds
een
 for

are
ant
 w

 9

executes a grant command G ≡ (w,x), each newly-created acyclic chain in AG
involving G needs to be tested for validity. There are two cases:

• G is the last edge on the chain;
• G is in the middle of the chain.

In both cases, there are issues of algorithmic efficiency, which are outside our
scope. The first case is somewhat easier, because the command state for G is
currently available to be used in checking the chain’s gr_preds. In the second
case, there is a more basic complication: We cannot expect the entire system
state from the last grant on the chain to have been retained (including the
database of that time).

For example, consider the authorization graph of Section 3.5, and suppose
subject x issues the following grant command (call it G4):

grant θ to y executeif true grantif ($USER in Accountant)
In order to determine if the new chain C’ ≡ <G4, G3> is valid, we need to see
if G4 justifies G3, i.e., to evaluate whether G3 satisfies the predicate $USER in
Accountant. To do so, we must have retained enough state of the earlier grant
G3 to know whether y was in Accountant at the time G3 was issued.

Consequently, both the semantics and pragmatics need to adjust.
Pragmatically, an organizational policy could specify what portion of the
system state that will be retained, and writers of Grant predicates would
endeavor to use only that portion. The saved portion of the state may be
extended over time, as the need for additional information is better
understood.

Formally, if an edge predicate in Cnew references state information that was
not saved, then the system must determine how to assign a value to the
predicate. We propose that the system treats unknown state information as a
no-information SQL Null. If such grants are permitted, then the order in
which Grant commands are received affects what information is available to
evaluate predicate validity. To keep the system sound (i.e., not allowing
grants that users would not want), we require that predicates be monotonic in
information state – i.e., do not use “is Null”.

3.7 Standard SQL as a Special Case

We now consider the connection between limitation predicates and
standard SQL. An SQL grant without grant option gives arbitrary execute
privilege and no grant privilege; thus it should be equivalent to

grant θ to s executeif true grantif false

 10

An SQL grant with grant option gives arbitrary execute and grant
privilege, and thus should be equivalent to

grant θ to s executeif true grantif true
This correspondence is confirmed in the following theorem:

Theorem 3: Consider a SQL authorization graph AG. Then:
• A grant or execute command, or an edge, or a graph, is valid iff it is

SQL-valid.
• AG can be constructed by a sequence of SQL grants.
• The validity of a grant or execute command is independent of the

command state. It depends only on the valid chains to the issuing
subject (i.e., the subject’s privileges).

If we use the conventions that an omitted executeif clause has a default value
of true, that “with grant option” is an alternate syntax for grantif true, and an
omitted grantif clause has a default value of false, then standard SQL syntax
is incorporated seamlessly into ours.

4. LIMITED PERMISSIONS ON VIEWS

Databases have a rich theory for views; in this respect, they are more
expressive than operating systems, information retrieval systems, and
middleware. Several guidelines drove our extension of “limited privileges”
theory to views. We wish again to satisfy the principles of Section 1, notably,
to have recognizable chains of authority. We also preserve the usual amenities
of view permissions: Grant/revoke from a view must behave as if the view
were an ordinary table, and one can grant access to a view but not to the
whole underlying table.

We present only an abbreviated treatment, largely through example, due to
page limits. Specifically, we examine only the privileges that the creator has,
and assume that only grants have limitation predicates (i.e., all exec_preds are
true). These restrictions, and the dictatorial power of the view creator, will be
relaxed in future work.

For each view, we define an authorization graph as if the view were an
ordinary table, except that the creator does not get unlimited privileges. Let
V=Q(T1,…,Tm), and suppose for the moment that the exec_pred of each Ti is
simply true. Then the semantics are: the view creator (and the initial node of
the view’s authorization graph) is initialized with a grant limitation that is the

 11

intersection of these predicates, (If a view creator were not subject to these
limitations, a user with limited access to table T could escape the limitations
by creating the view “Select * from T”.)

We now sketch several directions for extending the model of view privileges.

First, consider the view V defined by “Select A1, A2 from T”. In conventional
SQL, a view creator may want to grant the privilege on the operation select
from view V to users who do not have authority on the base table T. But
suppose the creator suffers from a limitation predicate on T, and hence also on
V. Who is empowered to make grants that loosen the limitations on the view?
Thus far, nobody has this very useful right.

To cure this (and several other ills), in future work we will move away from
treating a view as an object to be owned. Instead, it will be seen as derived
data, for which certain permissions are justifiable. To start with, any possessor
of a right on T can grant that right on V. (We are currently assuming the view
definitions to be readable by all interested parties. Under this assumption, any
subject with access to T could just define their own view, identical to V, and
then grant the privilege.)

Next, consider a view over multiple tables, e.g., “Select A6, A7 from T1 join
T2”. Oracle SQL specifies that the creator’s privileges on the view are the
intersection of the creator’s privileges on the input tables. In [Ro00] we apply
the same rule to non-creators. It extends easily to handle grants with limitation
predicates on just execute – the creator’s limitations are the intersection of the
limitations on all inputs. For the general case, a more complex graphical
treatment is needed to capture that a privilege on a view requires a valid chain
(appropriately generalized) on every one of the view’s inputs.

5. COMPARISON WITH PREVIOUS WORK

We compare our work with several recent, ambitious approaches. We
consider only the part of each work that seems relevant to predicate-limited
grants.

[Bert99] is the culmination of a series of papers that offer powerful
alternatives to SQL. In [Bert99], two rather independent ways to lessen
privileges are proposed. First, there is SQL-like cascading Revoke, without
explicit predicates. Second, there are explicit negative authorizations, which

 12

temporarily inactivate base permissions (node privileges, not grant edges) that
satisfy an explicit predicate p. (We can achieve the same effect by ANDing a
term (not p) to the execution predicate for edges out of the root.) That model
includes a large number of constructs, both for vendors to implement and for
administrators to learn and use. Administrators must manage the additional
privilege of imposing negative authorizations. The negative authorizations can
be weak or strong, and there are axioms about overriding and about breaking
ties. The model may be too complex to serve as the basis for a practical
facility.

We believe that limitation predicates provide a simpler model that still meets
the requirements identified in [Bert99]. Our model also improves on [Bert99]
in two other areas – scoping of limitations, and views. Their negative
authorizations are global, while our limitation predicates apply only along
paths in the authorization graph. This scoping greatly reduces the chance of
inadvertent or malicious denial of service. For views, [Bert99 section 2.3]
adopts a very strong semantics for negative authorization – that absolutely no
data visible in the view be accessible. Observing that implementation will be
very costly, they then specify that there should be no limitations on views. By
settling for less drastic controls, we are able to provide several useful
capabilities (as described in Section 3).

Another important predecessor to our work is [Sand99], which proposes
“prerequisites” (analogous to our limitation predicates) for onward privileges.
The model limits only onward privileges, not execution privileges, and
administrators must manage grants for the right to revoke each privilege.
[Glad97] also has an effective notion of prerequisites, but has no direct
support for granting privileges onward.

The Oracle 8i product supports “policy functions”, which allow administrator-
supplied code to add conjuncts to a query’s Where clause. This mechanism is
powerful, but difficult to understand. For example, it can be quite difficult to
determine: “Based on the current permissions, who can access table T?”.
There does not appear to be an analogous facility for gr_preds.

[Bert98] considers a special case of limitation predicates, namely those that
specify time intervals when the privilege can be exercised. Although our
predicate mechanism can handle such temporal predicates, we were not
concerned with providing a special syntax and evauation mechanism, as done
in [Bert98].

 13

Finally, limitation predicates can capture much of the spirit of Originator
Control (ORCON) restrictions. [McCo90] discusses Originator Control
restrictions, such as “You can must get the originator’s prior permission
before you ship a document outside some group G”. (Rather than controls on
the products that a user produces, we assume commercial-style discretionary
controls on granting and using privileges. We thus assume that authorized
users do not simply make their own copy of the information, and ship it.)

To model ORCON, we assume that a user s passes the information to s2 by
Granting s2 the right to read the original document (or a DBMS-controlled
replicate located closer to s2). Within this style, limitation predicates are
adequate. If s has no right to pass on the information, then the grant to s
should have no grant option. If s has a right to pass information within a
group FRIENDS but not outside, the grant to s carries the gr_pred that
“grantee ε FRIENDS”. We conjecture that other ORAC policies in [McCo90]
can be similarly approximated.

6. SUMMARY

This paper represents an initial theory that we believe deserves follow-up.
The main contributions of the work are to state principles for a limitation
model, and then to provide semantics that satisfy these principles. We also
extended limitation semantics to permissions on views. (Previous work in
non-database models naturally did not consider this issue.)

Our approach makes several advances over previous proposals.

• Model Economy: The model integrates Grant and Execute privileges,
consistently. It cleanly extends SQL. An earlier (longer) version of this
work showed that it was modular, cleanly separable from reactivation.

• Easy administration: The model naturally extends SQL concepts, and
accepts all SQL grants. There is no need to administer a separate “Limit”
privilege.

• Limitations respect lines of authority: Only a grantor or a responsible
ancestor has the authority to limit or revoke a user’s privilege.

• Flexibility in limitations: Designers can give any degree of power to
limitation predicates. For a pure security system (unconnected to a
DBMS), one could have queries only over security information plus
request parameters (e.g., time, trusted path). For a DBMS, one could
allow any SQL predicate.

• Views: Limitations on underlying tables apply in a natural way to views.

 14

-

-
-

Further work is necessary, of course. The top priority (beyond our resources)
would be to implement these features, both as proof of concept and to gather
users’ reactions. Traditional research questions include:
• Extend the theory to support

a fuller treatment of limitations on views. A prerequisite for doing
this well is to rethink the basic treatment of view ownership.
privilege inheritance via roles and groups.
a clean theory of reactivation and dynamic reevaluation of predicates.

• Efficient implementation.
• Beyond access controls, allow limitation policies that modify execution of

operations.

The pragmatic questions are equally important.
• Would users see limitations as an important mechanism, and would they

do the administrative work to impose them? How much generality is
needed?

• How does this model compare with what is implemented in security
policy managers for enterprises or for digital libraries [Glad97].

• What tools are needed to make it all usable?

7. REFERENCES

[Bert98] E. Bertino, C. Bettini, E. Ferrari, P. Samarati, “An access control model supporting
periodicity constraints and temporal reasoning,” ACM Trans. Database Systems, Vol. 23,
No. 3, Sept. 1998, pp. 231 – 285.

[Bert99] E. Bertino, S. Jajodia, P. Samarati, “A Flexible Authorization Mechanism for
Relational Data Management Systems,” ACM Trans. Information Systems, Vol. 17, No. 2,
April 1999, pp. 101-140.

[Cast95] S. Castano, M. Fugini, G. Martella, P. Samarati, Database Security, ACM
Press/Addison Wesley, 1995.

[Glad97] H. Gladney, “Access Control for Large Collections,” ACM Trans. Information
Systems, Vol. 15, No. 2, April 1997, pp. 154-194.

 [ISO99] ISO X3H2, SQL 99 Standard, section 4.35.
 [McCo90] C. McCollum, J. Messing, L. Notargiacomo, “Beyond the Pale of MAC and DAC –

Defining new forms of access control,” IEEE Symp. on Security and Privacy, 1990, pp. 190-
200.

 [Ros00] A. Rosenthal, E. Sciore, “View Security as the Basis for Data Warehouse Security”,
CAiSE Workshop on Design and Management of Data Warehouses, Stockholm, 2000. Also
available at http://www.mitre.org/resources/centers/it/staffpages/arnie/

 [Sand99] R. Sandhu, V. Bhamidipati, Q. Munawer, “The ARBAC97 Model for Role-Based
Administration of Roles,” ACM Trans. Information and System Security, Vol. 2, No. 1, Feb.
1999, p 105-135.

	INTRODUCTION
	ACCESS CONTROL BASICS
	PREDICATE-LIMITED GRANTS
	Command States
	Limitation Predicates
	Motivating Examples
	Semantics
	An Example to Illustrate the Subtleties
	Maintaining Validity
	Standard SQL as a Special Case

	LIMITED PERMISSIONS ON VIEWS
	COMPARISON WITH PREVIOUS WORK
	SUMMARY
	REFERENCES

