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Abstract. An objective image quality measure based on the digital image power spectrum of
normally acquired arbitrary scenes is developed.  This image quality measure, which does not
require imaging either designed targets or a constant scene, utilizes the previously known invariance
property for the power spectra of arbitrary scenes.  The measure incorporates a representation of
the human visual system, a novel approach to account for directional differences in perspective
(scale) for obliquely acquired scenes, and a filter developed to account for imaging system noise as
specifically evidenced in the image power spectra.  The primary application is to assess the quality
of digital images relevant to the image task of detection, recognition, and identification of man-made
objects from softcopy displayed versions of visible spectral region digital aerial images.
Experimental verification is presented demonstrating very good correlation (r=0.9) of this objective
quality measure with visual quality assessments.
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metrics.
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1 Introduction

It is generally recognized that the most meaningful image quality measures are based on visual (and
thus subjective) assessments of images, because in most final uses the images will be viewed by
human observers.  However, obtaining a sample size of visual image quality assessments large
enough to overcome the inherent variability among observers is time-consuming and is often
expensive. Thus, objective, rapidly computed image quality measures that correlate acceptably well
with perceived image quality are sought, which can substitute for subjective image assessments.
Many objective image quality measures have been proposed, developed and used over the years,
each with its own set of advantages and disadvantages, and a number of survey papers are
available.1-4

In this paper we develop an objective, quantitative image quality measure based on the digital
image power spectrum of normally acquired arbitrary scenes.   Our primary interest is to assess the
quality of digital images relevant to the image task of detection, recognition, and identification of
man-made objects from softcopy displayed versions of visible spectral region, monochrome, digital,
aerial images.  The power spectrum approach does not depend on imaging designed targets (such
as bars, lines or sinewaves), does not require detection and isolation of naturally occurring targets
(such as knife edges), and does not require re-imaging the same scene for comparison purposes
(such as via mean square error).  This is a major advantage in many operational scenarios where it
is highly inconvenient, or simply not possible to insert targets, extract natural targets, or re-image a
scene.  Essentially, by assuming the invariance (from scene to scene) of the imaging system input
scene power spectrum, a measure of the system output image power spectrum denotes the imaging
system quality.  This image quality measure differs from previous work by applying concepts to the
digital image power spectrum domain from human visual perception (visual spatial frequency
response characteristics), directional perspective scaling information for oblique images, and a filter
to account for noise.

Historically, the genesis for an image quality measure derived from image power spectra is
based on research performed over the last 20 years by other researchers, who investigated the shape,
form and content of power spectra of arbitrary random scenes.  This experimental and theoretical
work on scene power spectra was applied, beginning in the 1970s, by researchers who used
coherent optical processors to perform the required two-dimensional (2-D) Fourier transform
operation on input film imagery.5,6  The coherent optical processor approach was rapid and
demonstrated some success, but it also produced certain artifacts (corruption of the image power
spectrum dc by the sampling aperture spectrum and spike noise effects caused by film scratches),
and the approach was not readily amenable to isolating individual spectral components for further
processing.  We began our present research by taking a fresh look at the power spectrum based
image quality approach in the digital domain, in light of the fact that more and more imagery today
is digital in form; flexible, high speed, compact digital computers are generally available which allow
easy incorporation of concepts such as a human vision model; and objective image quality
assessment remains as a current problem.

Section 2 of this paper lays the groundwork for the validity of the power spectrum approach
for image quality assessment, with a discussion of relevant statistical properties of arbitrary scenes.
Section 3 then constructs the power-spectrum-based quality measure by incorporating several
beneficial normalizations and derived factors which take into account the human visual system,
power spectrum noise, and directional scale information.  Section 4 presents experimental results
and a discussion thereof, and section 5 summarizes the work accomplished.
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2 Scene Power Spectrum Invariance

The foundation of measuring the power spectrum of an image for quality assessment rests on the
assumption that the equational form of the imaging system input scene power spectrum is invariant
from scene to scene.  [As a corollary, the power spectrum is also independent of scale.]  This
invariance is a necessary assumption for the technique to work when the output image alone is
available for measurement.  If, in addition to the imaging system performance varying, the input
scene power spectrum also varied, it would be impossible to arrive at a measure of image quality
whose values could be compared between totally different imaged scenes.  On this topic, we note
that in a recent paper7 an image quality measure was presented based on the discrete cosine
transform (DCT) of an image.  However, since the DCT is unique to each image (i.e., the image can
be directly recovered from its DCT), a quality measure based on the DCT can only be relative, i.e.,
only a comparison between  different processed versions of the same image can be made.

At first glance it seems highly unlikely that all scenes have the same power spectrum since,
clearly, all scenes are different when viewed in the spatial domain.  However, when different scenes
are analyzed in the power spectrum spatial frequency domain, wherein all scene phase information
is, in effect, irretrievably buried, it can be shown that most arbitrary scenes do indeed theoretically
have the same power spectrum.  Specifically, the power at the non-zero frequencies goes as
1/frequencyK, where K=2 in a one-dimensional (1-D) analysis.  In a sense, this constancy should
not be too surprising; it probably relates to a fundamental order in natural scenes, which is an area
explored in the field of fractal geometry.8  This inverse frequency power spectrum has been found
in a variety of real scenes, including various natural scenes in the visible spectrum9 and forest
scenes in the infrared.10  It has also been found to be a useful representation for scenes when
modeling and optimizing end-to-end imaging system performance.11

2.1 Statistical Scene Model

One starting point for the derivation of the invariant scene power spectrum can be found in the
theory of statistical point processes, specifically, in what are called doubly stochastic poisson
processes.12,13  In a doubly stochastic poisson process a stochastic variation in the amplitude of
each pulse exists, in addition to the usual poisson process stochastic change/no change event
variation.  Such a process turns out to be a good model for real, naturally occurring scenes.  It was
previously applied by Itakura et al 10 and Takagi et al 14 to model the radiance background noise in
the infrared spectral region and is applied here to the visible spectral region.

Scanning a scene with a perfect point detector results in a light intensity variation I(x,y),
whose magnitude at any given point within the scan is a sample from a random variable and whose
probability density function (pdf) can be modeled as a Gaussian, with mean intensity I-  and variance
σs2 .   [Note that a globally constant (stationary) Gaussian intensity behavior is often not observed
over an entire real scene, but by assuming a nonstationary mean the gaussian assumption can still
be invoked.15]

Whether or not there is a change in intensity at any given point can be considered an
independent random variable with only two event outcomes:  either the intensity changes at the point
(event 1) or the intensity remains the same as it was at the last point (event 2).  Such a two-event
random variable has a probability of outcome described by the binomial pdf.  In the limit for large
sample size and low probability per event, the binomial pdf becomes the Poisson pdf, which in one
dimension is,
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(aΔx)λ

λ !
exp(−aΔx),

(1)

where Δx is the distance interval over which the probability of λ significant changes occur, aΔx is
the average value of the Poisson process (i.e., the average number of significant changes over the Δx
interval), and “a”  is the reciprocal of the average pulse width.  To bring the scene model postulated
into a realistic, physically meaningful realm, a detectable change in intensity  is required for event 1
to occur.

We now have a statistical process with two independent random variables and wish to derive
the power spectrum representing this process.  Assuming stationary statistics and ergodicity, the
autocorrelation function can be derived either by taking the expected value between the Gaussian
random variable of intensity variation and the Poisson random variable of intensity change, or
directly from the spatial average of the pulse process16.

The Fourier Transform of the 2-D autocorrelation function is (in this case) a rotationally
symmetric scene power spectrum, with radial spatial frequency ρ, and constant K,

           

2πaσs2

a2 + ρ2( )
3
2
+KI2δ(ρ) .

      (2)

     Equation 2 represents the power spectrum of an arbitrary 2-D pristine scene input to an
imaging system.  This pristine scene would, in the case of aerial imaging for example, be
uncorrupted by atmospheric haze or turbulence effects; in this application such effects are
considered to be part of the imaging system.

3 Construction of an Image Quality Measure from the Image Power Spectrum

3.1   2-D Power Spectrum Definition

Given a 2-D image consisting of M x M pixels, where a pixel's gray level is given by h(x,y) with
rectangular spatial coordinates x and y ranging from 0 to M-1, the discrete Fourier transform of the
image H(u, v) is defined as

To relate the orthogonal u and v indices of H(u,v) to spatial frequency components of the
input image, u and v must be normalized by the number of pixels in the x and y directions,
respectively, resulting in u/M and v/M in units of cycles per pixel width (assuming square pixels).

 
H(u,v) = exp[−2πiy v

M
]
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The 2-D image power spectrum of h(x,y)
 
is defined as |H(u, v)|2.  Since the input image

h(x,y) is an asymmetrical real function, its discrete Fourier transform H(u,v) is hermitian and its
power spectrum |H(u, v)|2 is at least bilaterally symmetric with |H(u, v)|2 = |H(-u, -v)|2.  As a result
of this symmetry, when computing the image power spectrum one can ignore negative u and v
frequencies thereby reducing the amount of data to be processed by a factor of two.  An additional
factor of two reduction in processing can be obtained by using an FFT implementation which has
been optimized for real values of h(x,y).

3.2. Diagnostic Aid: 2-D to 1-D Conversion

Because of the sheer number of data points in the digital 2-D power spectrum and the fact that
when plotted it is a surface in three-dimensions, the 2-D power spectrum does not lend itself to easy
comparison between images.  It is, therefore, useful to generate a 1-D power spectrum which is
more tractable and facilitates comparisons between images.  We have chosen to generate a form of
1-D power spectrum by averaging the power contained within bands of frequencies, where
frequency refers to the radial distance, ρ =  u2+v2 /M, from the origin to the power value at (u,v),
in units of cycles per pixel width.  We determined that a band width of ∆u/M = 1/64 cycle/pixel
width is a good compromise between obtaining a relatively small set of frequency bands while
retaining separation of information in the various frequency regions.   When the average power in
each frequency band is plotted against band center frequency, the curve shape and magnitude track
the corresponding quality of the image (except for noisy images) and can help to explain any
anomalies.   As will be discussed later,  the 1-D spectrum can also be used to detect noise,
determine the noise variance for white noise, and detect image blur.  Note that the image quality
measure (IQM) itself, however, is computed from the individual data points of the full 2-D power
spectrum.

3.3 Power Spectrum Normalizations

 It is necessary to compensate for the effect of image-to-image brightness variations on power
spectra magnitudes.  This is accomplished by dividing the 2-D power spectrum by µ2, the square of
the average gray level of the image, where µ2 = |H(0,0)|2/M4 and we refer to µ2 as the dc power.  It
would be equally valid to normalize the power spectrum by the total power.  Brightness
normalization was verified by multiplying the gray levels of an 8 bits/pixel image  by five different
values, representing low to high brightness.  The five resulting brightness normalized power spectra
all overlapped. The magnitude of the discrete image power spectrum is also proportional to the
number of pixels in the input image.   Normalization for variation in square image size is
accomplished by dividing the 2-D power spectrum by the total number of pixels in the image, M2.

The combination of brightness and pixel array size normalizations results in a normalized
2-D power spectrum P(u,v) given by

 
P(u, v) = H(u, v) 2

µ2M2
. (4)

P(u,v) and image quality measures derived from it can be compared directly for images with
different average brightnesses, different size input pixel arrays, and different numbers of bits/pixel.
Because several of the quantities to be introduced later are rotationally symmetric, polar coordinates
will be used in the remainder of this paper, thus Eq. (4) becomes
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P(ρ,θ) =

H(ρ,θ) 2

µ2M2
,  

θ = tan−1 v
u . (5)

In the special case of wanting to ascertain only the performance of the sensor component of
the overall imaging system, it is necessary to normalize out image contrast reduction due to
extraneous sources, such as atmospheric haze.  This normalization is necessary because
uncompensated haze that varies from image to image will lower both visual and power spectrum
derived image quality by various amounts, masking the true performance of the sensor, which may
in fact be operating in a steady state.  It has been shown17 that contrast reduction due to haze is
concentrated in the dc part of the image power spectrum.  Therefore, by normalizing |H(ρ,θ)|2 by
the ac component of the power spectrum in place of the previous dc normalization, the haze contrast
reduction variable is effectively taken out.  This ac normalized power spectrum, C(ρ,θ), is given by,

 

C(ρ,θ) =
M2 H(ρ,θ) 2

H(ρ,θ) 2

ρ>0

0. 5

∑
θ=−180°

180°

∑
.

(6)
Note that ac normalization applied to a hazy image power spectrum can also be used to predict the
quality of the equivalent haze-free image that may result from post processing.

3.4 Selection of Image Areas

Because it is only the structured part of an image for which the term “image quality” has meaning,
a power-spectrum-based image quality measurement technique requires the selection of image areas
which contain structure.  Figure 1(a) is an image of San Francisco International Airport and the
surrounding area which contains both structure filled city areas and uniform ocean areas.  Given an
image such as the upper right quadrant of Fig. 1(a), a human will ignore the large uniform ocean
area and base a subjective quality rating on the structure along the bottom of the quadrant.  Because
the power for a uniform area is concentrated in the lower frequencies, the power spectrum and,
therefore, any resulting IQM for the upper right quadrant of figure 1a is significantly reduced by
the high percentage of relatively constant gray level in the image.   [This ocean uniformity is really a
result of the degrading effect of the imaging system and low contrast; the inherent spectrum of the
ocean maintains the basic inverse frequency shape.]

Figure 1(b) shows the 1-D power spectra for each of the four quadrants of Fig. 1(a)
processed independently.  The 1-D power spectrum curve for the upper right quadrant is well below
those of the other three quadrants.  The bottom two quadrants of Fig. 1(a), which consist almost
entirely of city elements, show close agreement between their power spectra; the upper left quadrant,
which contains both city and ocean areas, falls between the other three quadrants.  This case
illustrates the importance of avoiding large uniform areas when applying a power-spectrum-based
IQM; however this restriction is not  severe.

Figure 2(a) and 2(b) illustrate the point that the exact portion of the image selected for
processing is not crucial as long as the actual quality is the same throughout the image.  Although
Fig. 2(a) contains various different objects, the entire image exhibits uniform quality, and there is
subsequently only a small variation in 1-D power spectra between various regions of the image, as
shown in Fig. 2(b).



7

    (a)
             

      (b)

Fig. 1 Impact of scene structural content on image power spectra.  (a)  Aerial image of San Francisco international
airport.  Each quadrant represents a 512 x  512 pixel array.  (Grid is not part of image.)  (b) Average gray level (and
array size) normalized power spectra for each of the 4 scene quadrants; quadrants 2, 3, and 4 have adequate structure
while the relatively small area of structure in quadrant 1 is overshadowed by the large uniform ocean area.
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(a)

  (b)

Fig. 2  Demonstration of scene power spectrum invariance.  (a) Aerial image of Los Angeles international airport
terminal (grid is not part of image).   (b) Average gray level (and array size) normalized power spectra for various
independent structure areas (256 x  256 pixel and 512 x  512 pixel segments) and entire 1024 x  1024 pixel image,
resulting in only small variation in power spectra.
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3.5 Incorporation of Human Visual System (HVS) Model

A number of experimental studies have demonstrated that the inclusion of a model for the human
visual system (HVS) in image processing tasks often leads to quantitative results which more
closely track the corresponding perceptual response.18  This has been found in experiments
involving objective image quality measures1,19,20 and in image compression.21,22  This success
with implementing a visual model is in spite of the fact that knowledge of the visual process is
incomplete.

Since our end goal is to derive an objective correlate of perceived image quality, we
incorporate an HVS model in the power spectrum IQM.  The approach is to use the square of a
rotationally symmetric modulation transfer function (MTF) representation of the HVS as a filter
applied to the image power spectrum.  [Squaring the MTF when used with a power spectrum is
consistent with linear systems theory.]    In our application, an HVS MTF, A(Tρ), is used which
was previously constructed23 as a composite of the psychophysical spatial frequency threshold
work of DePalma and Lowry24 and the experimental trial and error approach of Mannos and
Sakrison.21  Versions of this HVS MTF have demonstrated good results in experimentation on real
images.7, 22  A(Tρ) is shown in Fig. 3 and is defined as

 A(Tρ) = 0.2 + 0.45Tρ( ) exp(−0.18Tρ) , (7)

where the constant T fixes the spatial frequency of the peak of the HVS MTF with respect to the
image's Nyquist frequency and Tρ is in units of cycles/degree subtended by the eye.  For unit
display magnification, where one digital image pixel maps to one display resolution element, T also
fixes the HVS peak with respect to the display's Nyquist frequency.  In a comparison of the work
of nine independent researchers as reported by Levi25, a spread exists in the experimentally
measured peak location of the HVS MTF ranging from 1 to 9 cycles/degree.  The peak of A(Tρ)
occurs at 5.11 cycles/degree, which is about the midpoint of this spread.

In relation to the image display, we set this HVS MTF peak location at 20% of the 0.5
cycle/pixel width display Nyquist frequency (hence T = 51.1).  This 20% set point was established
after consideration of several factors.  We are mainly concerned at present with displays of still
images viewed for detection, identification and recognition of objects, as opposed to viewing motion
images for more general purposes.  In the former application, one can reasonably assume that an
observer will move far enough away from a display such that the perception of display noise and
scan lines are minimized, while at the same time close enough such that essentially all of the
information detail presented on the display can be resolved without eyestrain.  This allowable
variation in observer preferred viewing distance tends to result in the spatial frequency of the peak
of the HVS MTF occurring at a constant proportion of the display's Nyquist frequency.  It thus
makes sense to fix the HVS peak location along the image power spectrum spatial frequency axis to
some constant proportion of ρ = 0.5 cy/pixel width.  Setting the peak location at 20% of Nyquist
results in good tracking of the IQM with visual quality assessments, although the exact location of
the peak has not been found to be critical.



10

Fig. 3  Rotationally symmetric modulation transfer function representing the human visual
system23 used in the image quality measure.  The non-zero frequency peak is attributable to the
Mach effect.37

3.6 Handling Image System Noise

Noise can become a significant problem in digital imaging systems26, such as when transmitting a
sensor's output image over a noisy channel, when imaging under low light level conditions, or when
digitizing film imagery with scan spot sizes on the order of the film grain size.  When the common
assumption of additive noise in the system is made, the effect on the image power spectrum is as
shown in Fig. 4, where the computed power spectrum of an 8 bits/pixel image with and without
additive white gaussian noise is given.  The noisy image can be represented in one dimension by
o(x)+n(x), where o(x) is the output signal and n(x) is the noise.  The noisy image power spectrum
is then given by |O(u)|2+|N(u)|2+2Real[O(u)N*(u)], where O(u) and N(u) are the Fourier
transforms of o(x) and n(x), respectively, * denotes complex conjugate, and the last two terms in the
power spectrum represent the added power.  It is apparent from Fig. 4 that any reasonable merit
factor applied to the power spectrum (such as area under the curve, moment, etc.) to denote the
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corresponding image quality will have a larger magnitude for the noisy image than for the noiseless
image.   To reverse this trend when noise is present, it is necessary to apply a filter to the computed
image power spectrum prior to operating upon it to derive an IQM.

To identify an effective noise filter, a spectral subtraction filter, an empirically derived
exponential decay filter, and the Wiener filter were evaluated.  The procedure was to add various
amounts of white gaussian noise to several digital images, compute the noisy image power spectra
with the incorporated noise filter, and assess the resultant 1-D spectrum plots and IQM values.

A modification to the well known Wiener noise filter performed best and is incorporated in
the IQM.  The classic Wiener filter,27 here taken to be rotationally symmetric, is given by

 

O(ρ) 2

O(ρ) 2 + N(ρ) 2
.

(8)
In Eq. (8), |O(ρ)|2  is the noiseless image power spectrum, which we represent by the zero

mean imaging system input scene power spectrum [term 1 of Eq. (6)] multiplied by the nominal
imaging system power spectrum response function (system MTF2).   The system noise power
spectrum, |N(ρ)|2, can be obtained in several ways.  If the noise is white (flat spectrum) then
|N(ρ)|2 simply reduces to the noise variance σn

2 .  We have found that the average power in the
Nyquist frequency band (see section 3.2) of the image power spectrum unnormalized by brightness
is a very good measure of σn

2 for white noise (in the system of units where the pixel dimension is
unity),

 

σn
2 =

µ2

B
P(ρ,θ)

ρ= 3164

0 .5

∑
θ=−180

180

∑ ,

(9)

where B is the number of data points in the Nyquist band.  Other methods of quantifying |N(ρ)|2,
particularly useful for colored noise, are to sample a uniform gray level image area, apply a test
flash to the sensor, or construct a model of the noise power spectrum shape and then use the actual
image Nyquist band value to fix the noise level.

The classic Wiener filter was modified by incorporating one constant (κ1) that changes the
relative weights of the filter components and by another constant  (κ2 ) that slightly increases the
effect of the filter on the image power spectrum:

 
W(ρ) =

2πaσs2 exp(−ρ2 σg2)
2πaσs2 exp(−ρ2 σg2) + κ1(a2 + ρ2)1.5 N(ρ)

2













κ2

(10)

Table I defines the parameters in Eq. (8) [from which Eq. (10) is derived] and briefly discusses
how the parameter values were determined.

The modified Wiener filter can also be used to predict the quality of post-processed noise-
filtered images directly from the pre-processed noisy images.  This capability is useful for softcopy
systems where the quality of the post-processed image is desired, but only an original noisy image
is available for power spectrum measurement.  An effective noise filter for this case should produce
an image power spectrum magnitude that is slightly less than the magnitude of a noiseless-image
power spectrum, given that noise filtering results in a small loss of image quality (vis a' vis an
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original noiseless image).  Equation (10) can be applied to this case by simply using a different
value for κ1 (see Table 1).

Fig. 4  Impact of system noise on image power spectrum.  White gaussian noise
(SNR = –1.7 dB) was added to an 8 bit/pixel digital image.
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                          Table 1  Noise filter parameters
___________________________________________________________________

O(ρ )2 = [exp(−ρ2 / 2σ g2)]2[2π aσ s2 )/(a2 + ρ2 )3/ 2]

            [image system MTF]2  x [zero −mean scene power spectrum]
___________________________________________________________________

σg
2 =  0.078

           variance of gaussian MTF with typical 20% modulation at Nyquist
___________________________________________________________________
ρ        radial spatial frequency in cycles/pixel width
___________________________________________________________________
a =  0.926
          reciprocal of average pulse width (from measured data)
___________________________________________________________________

σs
2 = [(0.3125)2m ]2

          scene variance :  typical reflectance variance and mean computed from 

          published data28 and converted to variance of scene quantized to m bits/pixel
___________________________________________________________________

κ1 = (3355)(2−2m)(σn2) + 51.2       (for noisy image)
    =  19.2        (for post - processed noise filtered image)
                        empirically derived values
___________________________________________________________________
κ2  =  1.5
           empirically derived value
___________________________________________________________________

N(ρ) 2       noise power spectrum;  characterized by σ n
2 for white noise (see text)

___________________________________________________________________ 
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3.7 Directional Scale Factor in IQM

The scene power spectrum is independent of scale, that is, the same equational form is obtained
regardless of the scale at which the scene is acquired.  However, in many applications image quality
is a function of object–image scale. For example, in aerial surveying a scene that is imaged at a scale
of 1000:1 would be visually assessed as having higher quality for interpretation of ground objects
than the same scene imaged at 10,000:1 scale (assuming constant imaging system performance).
For use in such applications, therefore, the image power spectrum is weighted by the ground–image
scale.

For vertically acquired aerial images, wherein the optical axis is perpendicular to the ground
at nadir, the scale anywhere within the image is constant (for flat terrain) and independent of
direction.  However, for oblique aerial images, wherein the optical axis is tilted with respect to the
vertical, the scale is a function of direction and field location.29  Given some basic parameters of the
image sensor during image acquisition, specifically, sensor look angle α and aircraft altitude above
terrain h, the apparent slant range in any direction for an oblique image can be calculated, from
which the apparent scale in that direction is easily obtained, given the sensor optics focal length.
The appropriate directional scale can then be applied to each individual discrete power spectrum
data value, P(ρ,θ), since directionality information is preserved in going from the image spatial
domain to the power spectrum domain.  This produces a directional scale weighting factor in the
power spectrum IQM which, on conceptual grounds, will more closely track visual quality
assessments for aerial images acquired at any view angle.  Note that the directional scales are
calculated for a single ground location within the image because a single spatial coordinate in the
image does not map to a single spatial frequency coordinate in the power spectrum domain (even
though directionality is preserved).  For this purpose we use the center of the image, where the
image is defined by the perimeter of the power spectrum sampling area.

The apparent slant range, D, applicable to a power spectrum data point at angle θ is

 
D =

G2cos2(β) +Q2sin2(β)[ ]
12

GQ
.

(11)

In Eq. (11),  G and Q are functions of the true slant range at the field angle component
corresponding to the center of the power spectrum sampling area; and β is the angle between the
radial line ρ to a specific power spectrum data point P(ρ,θ) and the sensor look direction (given by
the azimuth).  G, Q, and all auxiliary quantities are explicitly defined in the derivation of Eq. (11)
given in the appendix .  Note that once an image location in the sensor’s field of view is defined, D
only varies with θ.

Scale is incorporated into the IQM by projecting the image pixel size q to the ground, where
q is the pixel width, diameter or center-to-center spacing as input to the discrete Fourier transform.
The projection uses the apparent slant range D (for oblique images) and the sensor optics focal
length f to define the image-to-ground scale.  Combining this scale with q results in the IQM
parameter S(θ1), with spatial frequency units of cycles per ground meter:

 
S(θ1) =

f
2Dq

, for oblique images .
(12)
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S(θ1) =

f
2hq

, for vertical images .
(13)

S(θ1) is multiplied by P(ρ,θ) in the IQM, analogous to multiplication of the integration interval with
the integrand in numerical integration.

3.8 Image Quality Measure

The IQM is derived from the normalized 2-D power spectrum P(ρ,θ) weighted by the square of the
MTF of the human visual system A2(Tρ), the directional scale of the input image S(θ1), and the
modified Wiener noise filter W(ρ).  The IQM is given by

 
IQM =

1
M2 S(θ1)W(ρ)A

2(Tρ) P(ρ,θ)
ρ=0 .01

0. 5

∑
θ=−180°

180°

∑ .
(14)

The double summation , which reduces the IQM to a single value, is analogous to the 1-D case of
taking the area under a weighted system MTF curve to obtain a measure of image quality; the latter
has been the basis for many image quality measures.1,3,4.   The summation also has the benefit of
smoothing out directional differences which may occur in some image power spectra caused, for
example, by a pattern of parallel streets.

Very low spatial frequency information cannot always be relied upon to be sensitive to
quality changes between images.  For instance, consider the case of an imaging system having a
gaussian MTF.    As dramatically large changes in the overall MTF are realized by changing the
gaussian’s variance by more than an order of magnitude, the percent change in modulation at the
very low spatial frequencies is small.  We therefore avoid this very low spatial frequency region of
the power spectrum by starting the summation for the IQM at 2% of the 0.5 cycle/pixel width
image Nyquist frequency.  The IQM summation could validly be continued out to the 2-D FFT
corner points at ρ=0.707; however, this has only a negligible effect on the IQM magnitude because
so little power is beyond ρ=0.5.  Division by image size, M2, is used to normalize the IQM so that
there is no weighting by image size.  Equation (14) was implemented in FORTRAN on a PC/386
class computer using a real input/complex output Cooley-Tukey FFT algorithm30 to compute the
power spectrum.

4 Performance of the Image Quality Measure

Our primary interest is in objectively assessing image quality relevant to the image task of detection,
recognition, and identification of man-made objects from softcopy displayed versions of visible
spectral region digital aerial images.  To assess the performance of our IQM for this image task, we
compare the IQM values measured on a set of digital images to a visual image quality assessment
technique which itself is applied to the softcopy displayed versions of the images.  Comparison
with visual assessments is an important IQM performance verification and validation technique for
images which will ultimately be utilized and interpreted by humans.  If a strong singular relation is
demonstrated, then the objective IQM can replace the subjective visual assessment technique; the
latter is often tedious, time-consuming, and labor-intensive.
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For this comparison, we use a previously developed and well-established visual image
quality scale.31,32  In this visual scale, a trained image analyst assigns each image a number from 0
to 9 corresponding to the information that he or she can extract when the image is displayed  on a
well-calibrated, high-quality softcopy display.  For example, being able to (only) detect such objects
as railroad yards or large aircraft at an airfield would result in an assessed image quality value of 1;
being able to identify vehicle types parked in the railroad yard or aircraft types at the airfield would
give the image an assessed value of 8.

The power spectrum IQM was applied to a set of fifty digital 8 bit/pixel images for which
visual quality assessment values were available.  Thirty-three of the images were aerial images of
various California urban/suburban areas (San Diego, San Francisco, Los Angeles).33  These were
vertical views acquired in clear weather, originally on film, which was then digitized to 8 bits/pixel
monochrome and supplied in either 512 x 512 pixel or 1024 x 1024 pixel segments.  These thirty-
three images were each assessed on a CRT display by four trained image analysts and the average
of the four was used as each image’s visual quality value.  All but two of the assessed values fell
within the visual quality range of 1.0 to 3.0.  The other seventeen aerial images represent sparse
structure scenes (radio tower/buildings, rural crossroads, bridge/river/forest, etc.) acquired on film at
various obliquities up to 60° from nadir.  The film was digitized to 512 x 512 pixels, 8 bits/pixel,
and each frame was assessed on a CRT display by ten trained image analysts, resulting in average
visual quality values ranging from 3.2 to 7.8.  For both sets of images the visual assessments were
performed on the CRT display without invoking softcopy image enhancements.

The result of applying the IQM of Eq. (14) to the fifty images is shown in a plot of IQM vs
average visually assessed quality in Fig. 5.  Based on a priori visual assessments of image structural
content, the IQM was applied to the full image for approximately half of the images, and in the
remaining images, regions of interest no smaller than 256 x 256 pixels were selected.  The product
moment correlation coefficient, r, between log(IQM) and average image quality is 0.90, which is
quite good for a psychophysical experiment.  The log of the IQM values are used for this
correlation because the values of the visual scale used are related to cycles/ground meter in a
logarithmic fashion and our IQM has the dimensions of cycles/ground meter.  The importance of
making the IQM a function of scale is illustrated by the fact that the correlation with visual quality
drops to r = 0.60 if the scale factor S(θ1) is deleted from the IQM.  Since it is the values of the
visual scale that have meaning to image analysts, the IQM values are converted to their equivalent
visual scale values by using the least squares regression equation given in Fig. 5
.

The performance of the modified Wiener noise filter was verified by selecting 3 of the
images with the highest visual quality values and adding small, medium and large amounts of white
gaussian noise to each image (SNR values of 9.2 dB, 3.2 dB, and -1.7 dB, respectively).  The IQM
of Eq. (14) was then applied to each  noise corrupted image twice: once with the noise filter
parameter κ1 set for measuring the quality of the noisy image, and once with κ1  set for predicting
the quality of the noise-filtered image (refer to discussion in section 3.6).  Figure 6 shows the
representative results of applying the modified Wiener filter to the power spectra of one of the three
noise corrupted images.  The filter correctly decreases the resulting IQM by small amounts for the
case of noise-filtered image quality and by large amounts for the noisy image quality case.  The
values of σn

2  as measured from the image power spectra Nyquist band were used in the filter; these
values differed from the 3 input gray level noise variances by less than 6 percent on average.  The
presence or absence of noise can be ascertained from the 1-D image power spectrum by taking the
ratio of the power in the ρ = 0.15 cy/pixel width frequency band to the power in the Nyquist band.
If this ratio is less than five, then noise is present and the noise filter needs to be invoked in the
IQM.
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Fig. 5  Overall result of power spectrum image quality measure applied to 50 independent, 8 bit/pixel, aerial,
monochrome, visible spectral region images (2562, 5122 and 10242 pixel images intermixed), compared to average
visual quality of each image as assessed by trained observers.

Fig.6  Result of applying modified Wiener noise filter of equation 13 to an image corrupted with noise.  Upper
curve is with κ1 set for predicted quality of the noise-filtered image.  Lower curve is with κ1 set for quality of the
noisy image.
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Pre-processing the input image pixel values, specifically, raising the gray level values to the
0.33 power prior to computing the discrete Fourier transform, has been proposed18,21,34 as a
method of taking into account the nonlinear portion of the HVS.  Hanes35 found some years ago
that incident luminance raised to the 0.33 power relates to the perceived brightness of objects, a
finding later confirmed by Mansfield.36  We investigated the use of this pre-processing step with
our IQM, but found that it did not aid correlation with visual quality (r remains at 0.90).  This
outcome could result from a decreased effectiveness of the model when applied to the limited
number of image intensity values of digital imagery quantized to 8 bits/pixel (256 gray levels); or
the contrast gain of the softcopy display used in assessing the visual quality may have, in effect,
already compensated for the nonlinear luminance-perceived brightness relation, negating its utility
as a factor in the power spectrum IQM.  However, a further investigation determined that
incorporation of the linear HVS model, A2(Tρ), in the IQM also did not aid correlation with visual
quality for this set of imagery (r remains at 0.90).  We conjecture that an experimentally induced
upper bound on the correlation has been reached between the objective IQM and visual assessments
for this set of imagery, such that the true merit of an HVS model is masked by this upper bound on
r.   This upper bound can be attributed to a known variability between the human assessors, as well
as some variability between the power spectra of different scenes. In terms of visual assessment
variability the standard deviation between observers for some images was as large as 2.0 visual units
(average standard deviation across the 50 images is 1.0 visual units).  This human variability  alone
would set a practical upper bound on the correlation coefficient  at some value less than 1.0.  We
are in the process of obtaining a larger image sample size covering a wider range of image types
and with less human observer variability; we believe this larger sample size will substantiate the
merit of incorporating an HVS model in the IQM.

To further test the IQM performance over the extremes of image quality, the quality of the
previous three images (without added noise) was intentionally degraded by (1) adding various
amounts of haze and (2) blurring the images.  Haze was introduced in accordance with an additive
haze model by adding a constant gray level to each pixel in the image and then multiplying all the
pixels by a constant value to maintain the same average gray level as the original image.  For the
case of aerial imagery, haze introduced by atmospheric conditions is an often encountered source of
image quality degradation.

As shown in Fig. 7, the IQM does monotonically decrease in magnitude as haze level
increases (i.e., as contrast decreases), as would be expected from visual assessments of the imagery.
Also shown is the IQM derived from ac normalized power spectra [Eq. (14) with C(ρ,θ) substituted
for P(ρ,θ)], applicable to the special case of isolating sensor performance when haze varies.  As
desired, the IQM is now constant as haze varies, indicating constant sensor performance.

A general frequency-dependent image degradation (“blur”) was introduced by taking the
discrete Fourier transform of each of the three images and multiplying the resulting coefficients by
a gaussian, exp[-ν2ρ2], where ν is the blur factor.  Figure 8 shows that the IQM decreases as the
blur increases, as it should.  However, a visual assessment of the blurred images indicated that they
had lower visual quality than was computed by the IQM.  An analysis of the corresponding
1-D power spectra indicated that the spatial frequency region of quality sensitivity shifts to higher
frequencies for blurred images.  Therefore, by deleting the lower frequency information used in the
IQM, the IQM regains good tracking with visual quality for the blurred images, as shown in Fig.8.
Specifically, the lower limit of summation in the IQM was changed from 2% of Nyquist to 20% of
Nyquist.
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Fig. 7  Effect of image contrast reduction (simulated atmospheric haze) on IQM derived from dc normalized power
spectrum and from ac normalized power spectrum.  The curve for ac normalization has a scaling constant to bring its
magnitude within the range of the curve for dc normalization.

Fig. 8  IQM results for blurred imagery.  Power summation for IQM starts at 2 %
of Nyquist in upper curve and 20% of Nyquist in lower curve.
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A test can be applied to the power spectrum to detect the presence of frequency dependent
degradation and, if present, the lower limit of summation in the IQM can be automatically shifted to
the higher frequency.  From Fourier theory it is known that the rate at which the power spectrum
dies away is directly proportional to the smoothness of its transform (the autocorrelation function),
and increasing frequency dependent degradation of the image results in a smoother autocorrelation.
This Fourier property can be used to determine the presence of blur by measuring the rate of
decrease of the power spectrum.  We can apply this concept, tailored to the specific problem, by
determining the average rate of change of the 1-D log power versus frequency relation over a telltale
frequency range, which appears to be from 10% to 50% of the Nyquist frequency.  The result of
applying this concept to all of the images indicates that the procedure works.  Specifically, for the
50 original, non-blurred images, the 9 added haze images, and the 9 added-noise images, the average
/slope/ over the 10% to 50% Nyquist frequency region is always less than 12 (average= 7.9),
whereas for the 9 blurred images the average slope is always greater than 13 (average = 17.1).  This
indicates a clear demarcation between blurred and non-blurred images.

5 Summary

We have developed an objective image quality measure based on digital image power spectra.
Good correlation of this measure with visual quality of aerial images assessed for their informative
value (detection, recognition and identification of man-made objects) has been demonstrated.  The
quality measure incorporates a modulation transfer function representation of the human visual
system.  As the science of vision research advances, it is expected that the visual system response
model can be refined and combined with a model of softcopy display image quality characteristics.
A novel approach was utilized for handling obliquely acquired scenes by defining (and deriving) a
directional scale factor for inclusion in the quality measure.  For application to those cases where
digital image noise exists, a modified Wiener filter, adaptive to specific noise situations, was
constructed and incorporated into the quality measure.  It was shown that a simple test applied to
the image power spectrum can determine the presence of noise and that the variance of white noise
can be accurately and easily estimated from the power spectrum.

A major benefit of an image quality measure based on image power spectra is that it is
applied to the naturally imaged scene as is.  It does not require use of designed quality assessment
targets or re-imaging the same scene for comparison purposes; it requires only a selection of an
image area containing some structure.  Although the required 2-D discrete Fourier transform
operation is computationally intensive, current digital hardware overcomes this difficulty, allowing
potentially wide application of this quality measure.

6  Appendix: Directional Apparent Slant Range for Oblique Images

If we refer to Fig. 9 and assume that the ground elevation at the image location  p3 equals the
ground elevation at nadir, p5, then the true slant range L0 along the optical axis p2p3 and
corresponding to sensor look angle α is (from law of cosines)

 L0 = E2 + E + h( )2 − 2E E + h( )cosϕα[ ]
1
2 . (15)

In many cases the sensor look angle must be determined from its given component tilt angle
τ and given component side pointing angle χ.  Tilt refers to the component of the optical axis with
respect to nadir line p2p5  in the flight line plane, and the side pointing angle refers to the
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component of the optical axis with respect to the nadir line in a plane 90° to the flight line. The
sensor look angle is then determined from plane triangle p1p2p3:

 
α = sin−1 E sinϕα

L0









 ,

(16)

where ϕα = b/E and arc length b is defined from the right spherical triangle P5P4P3 as

 
b = Ecos−1 cosϕ τ cosϕ χ( ) . (17)

[The projection of b onto the image plane is the principal line.]

Since the full gamut of L values are completely defined over just one quadrant the
magnitude of τ and χ can be used, thereby avoiding the need for taking into account any given sign
convention and resulting in the convenient limits:  0 ≤ |τ| < π/2, 0 ≤ |χ| < π/2.

Now substituting b/E for ϕα in Eq. (16) and using the relation sin[cos-1(x)] = (1-x2)1/2
gives

 
α = sin−1 E

L0
1 − cos2ϕ τ cos

2ϕχ( )
1
2







 ,

(18)
where

 
ϕ τ = sin

−1 E + h
E

sin τ

 


 − τ ,

(19)
and

 
ϕ χ = sin−1 E + h

E
sin χ


 


 − χ .

(20)

Similarly, the azimuth angle ψ is determined from right spherical triangle p5p4p3:

 

ψ = sin−1
sinϕ τ

1 − cos2ϕ τ cos
2ϕ χ( )

12
















.

(21)

It is convenient (with no loss of correctness) to consider the image–ground slant range as
having an effective or apparent value, the value depending on orientation.  In a direction
perpendicular to b, i.e., along a line parallel to the true horizon, the apparent slant range is equal to
the true slant range Lε.  But along a line collinear with b, the apparent slant range is

 

Lεcosε
cos α − ε( )

,
(22)
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where ε is the component of the sensor optics field angle along b.  ε is positive on the nadir side of
the optical axis and negative on the horizon side.  [The term cos ε/cos(α−ε) in Eq. (22) is equivalent
to the width of a ground object taken along the b line divided by the width projected onto a
perpendicular to the optical axis. For example, see Moffitt,29 pg 407, and work out WU/WU'.]  Lε
can be found by substituting φα−ε for φα in Eq. (15), where φα−ε  is computed by substituting
(α−ε) for |τ| in Eq. (19).  Note that for low sensor altitudes (below 1500 meters) it is
computationally more tractable to utilize the simpler flat earth model to compute Lo, Le, α, and ψ
from plane geometry.

Equation (22) and Lε determine the apparent slant ranges in orthogonal directions at any
point on the principal line.  The apparent slant range in any intermediate direction can be
approximated by use of properties of an ellipse.  That is, if an array of small circles is photographed
with an oblique camera (each circle covering a very small field angle), then an array of ellipses
results in the image plane, where Lε and Eq. (22) are inversely proportional to the major and minor
axes of any ellipse occurring on the principle line.  At any point on the principal line, therefore, the
apparent slant range D in any direction can be closely approximated by utilizing the reciprocal of
the polar form equation of an ellipse,

 
D =

G2cos2β + Q2sin2β( )
12

GQ
,

(23)

where G is 1/2 the minor axis length, which is equal to 1/Lε for the case of Lε greater than
Eq. (22), and Q is 1/2 the major axis length, which is equal to the reciprocal of Eq. (22) for the
same case.  For the case of Lε less than Eq. (22), G equals the reciprocal of Eq. (22), and Q equals
1/ Lε .

The angle β relates each image power spectrum data point P(r,θ) to the corresponding
directional slant range.  From Fig. 10 we obtain

 β = γ + θ1− ψ , (24)

where γ is the magnitude of the angle between the pixel sampling array positive x axis and the
ground projection of the sensor aircraft crosstrack line (positive x axis defined to be between
positive flight line axis and positive crosstrack line axis).  Since the image power spectrum is
bilaterally symmetric, power values are actually only computed over the two quadrants (+u,+v) and
(+u,-v), where the x,y image axes correspond to the u,v power spectrum axes, respectively.
However, since D is completely defined over just one quadrant (+u,+v), 0 ≤ ψ ≤ π/2, and θ1 is
taken to be the equivalent value of θ in the (+u,+v) quadrant, θ1 = tan-1(|v|/|u|).
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Fig. 9  Geometry for derivation of apparent directional slant range:  sensor aircraft at p2 at altitude h
above terrain, ground image located at p3, and center of earth at p1.  Heavy lines lie on earth's
surface; arrow line is flight direction projected to ground; p5p4 is crosstrack line.
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Fig. 10  Orientation convention for relating a given digital image power spectrum data point, P(r,θ),
with the appropriate apparent slant range direction angle, β.
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