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ABSTRACT

This document describes techniques and image quality impacts of scanning/digitizing
fingerprints at one resolution and rescaling (aka resampling) the digital images to another
resolution. A number of rescaling techniques are investigated and 'good' as well as ‘poor
techniques are identified. Thiswork isin support of the Federal Bureau of Investigation -
Integrated Automated Fingerprint Identification System (FBI - IAFIS), to aid and guide

implementation of useful rescaling techniques that will retain required fingerprint image
quality.
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SECTION 1

INTRODUCTION AND EXECUTIVE SUMMARY

This document reports on an investigation of various rescaling techniques that could
commonly be applied to digital (scanned) fingerprints. Good, useful techniques as well as
unsatisfactory techniques are discussed, with respect to their use in the Federal Bureau of
Investigation's Integrated Automated Fingerprint Identification System (FBI-IAFIS). Itis
the intent of this document to supply information on rescaling which serves as a useful
aid and guide to fingerprint system vendors, integrators, and users that are responsible for
developing and implementing rescaling techniques for scanned fingerprints. Following the
guidance in this document will help to assure the quality of digital fingerprintsin IAFIS.

Fingerprint scannersto be used in IAFIS are required to produce images at specific pixels
per inch (ppi) resolution levels: 250 ppi for text, 500 ppi for ten-print cards and live
fingerprint scans, and 1000 ppi for latent fingerprints. However, it may often be more
efficient, cost-effective, and convenient to employ scanners that have more than the
required resolution. For example, it can be more efficient to scan an entire ten-print card
at 500 ppi and then apply arescaling algorithm to the top 3 x 8 inch text area of the card
to achieve the 250 ppi required for that text area, rather than separately scanning the text
areaat 250 ppi. Asanother example, the true resolution of many of today's commercial-
off-the-shelf (COTY) flatbed paper scannersis 600 ppi. Rather than paying the
additional cost to modify these COTS scanners to scan cards at the required 500 ppi, it is
more cost-effective to scan at the 'native mode' 600 ppi and then apply arescaling
algorithm to achieve 500 ppi. There are also many low cost COTS flatbed scanners
operating at atrue resolution of 300 or 400 ppi. A fingerprint system vendor or
integrator may be tempted to utilize such a scanner and then rescale the output to achieve
the required 500 ppi.

When rescaling the scanned image downward to achieve 500 ppi, the ssmplest method,
commonly applied in COTS flatbed scanners, isto decimate the higher resolution image.
Decimation simply removes specific rows and columns of pixelsto reduce the size of the
image. We previously demonstrated [Nill and Forkert, 1995] that 500 to 250 ppi
decimation is an acceptable procedure for rescaling scanned text, in that retained image
quality is more than adequate to decipher the text. On the other hand, the analysis
detailed in Section 4 of this document demonstrates that 600 to 500 ppi decimation of
digitized fingerprints creates visible image artifacts. These discontinuity artifacts can
adversely affect the capability of fingerprint experts to perform fingerprint
matching/identification, can adversely affect the feature detection capabilities of an
Automated Fingerprint Identification System (AFIS), and can adversely interact with
image compression. In addition, 600 to 500 ppi decimated images will periodically not
meet the IAFIS Image Quality Specification's "geometric accuracy" requirement for
scanners [FBI, 1994].



Given the image quality problems with 600 to 500 ppi decimation, a number of
alternative rescaling techniques based on interpolation were investigated. Asdetailed in
Section 3, these interpolation techniques prove to be superior to decimation in terms of
retained image quality and lack of image artifacts. In addition, the geometric integrity of
the original scan is substantially maintained.

An exampleis shown in Section 5 of the very apparent artifacts and low image quality
produced when attempting to rescale upward, i.e., when scanning at a resolution less than
500 ppi and processing the image to obtain an effective 500 ppi image. This scanning
approach is unacceptable for IAFIS scanners.

The analysisin this report supports the following conclusions regarding rescaling of
digitized fingerprints:

(1) Rescaling 600 ppi scanned fingerprints to 500 ppi by decimation results in image
artifacts and is an unsatisfactory technique. Thistype of decimation should be formally
categorized as an unacceptable technique in the IAFIS 1QS. Categorizing it as
unacceptable requires atest procedure to detect it, and Section 6 discusses such detection
methods. It isrecommended that a quantitative detection method be implemented as part
of the IAFIS 1QS verification test procedures.

(2) Interpolation from 600 to 500 ppi is the preferred rescaling approach and this
document describes a number of good interpolation techniques. These descriptions can be
used as an aid and guide by those responsible for implementing scanner rescaling
algorithms.

(3) Scanning at atrue resolution which is less than 500 ppi and rescaling the image up to
500 ppi is unacceptable for IAFIS scanners, regardless of the rescaling technique used.
Methods for detecting upward rescaling are discussed in Section 6.

Although the emphasisin this report is on exploring the various methods for producing
500 ppi resolution fingerprints, the same conclusions hold for the case of producing 1000
ppi resolution fingerprints. That is, if the fingerprint is scanned at a resolution higher
than 1000 ppi then it should be rescaled to 1000 ppi viainterpolation, and obtaining a
1000 ppi image from a scanner resolution of less than 1000 ppi would be unacceptable,
no matter what method was used.

Another component of |AFIS consists of printers to produce hardcopy images of
previously scanned/digitized fingerprints. To some degree, the analysis performed and
conclusions drawn in this document with respect to rescaling scanner outputs also holds
for rescaling printer outputs. However, there are several exceptions. In one case, rescaling
upward for printing is avalid way of magnifying or enlarging the input digital image so
that it can be more easily viewed, whereas upward rescaling of scanner outputsis
unacceptable. In another case, printers which only print black/white dots and rely on 'dot
dithering' to obtain grayscale, such as laserprinters or inkjet printers, may utilize complex
algorithms tied to visual properties to obtain the dither pattern and gray scale values.

2



In these cases the best rescaling technique is effectively tied to the dither algorithm
utilized, and no general statement can be made as to whether or not, e.g., decimation
rescaling would give acceptable print image quality. On the other hand, the results and
implications given in this document for rescaling scanner resolution downward would
essentialy hold true for downward rescaling of printers which do produce true gray scale
pixels, such as digital photographic printers (e.g., dry silver printers).






SECTION 2

ASPECTSOF ALIASING

2.1 GENERAL EXPLANATION OF ALIASING

Aliasing isaterm used to identify artifacts that come from undersampling a signal; these
artifacts are undesirabl e because they either obscure real information or create false
information. For example, aliasing could cause ridge-like false structures to appear in
scanned fingerprints, or could cause real sweat pores to disappear. A discussion of
aliasing from the perspective of signal processing sampling theory is givenin Appendix A.

The degree of aliasing in three cases relevant to the |AFIS requirement for fingerprints to
be digitized to 500 ppi are important to note, as follows:

1) A scanner that digitizes the fingerprint at aresolution less than 500 ppi (e.g., at 300
ppi) and then obtains an effective 500 ppi image by rescaling, will produce very
significant aliasing artifacts.

2) A scanner that digitizes the fingerprint at a resolution greater than 500 ppi will
produce visible artifacts if nonuniform decimation is used to reduce the higher resolution
scan (e.g., at 600 ppi) to 500 ppi, but will not produce visible artifacts if an appropriate
interpolation technique is used.

3) If thefingerprint is digitized at atrue 500 ppi but the fingerprint itself has frequency
content beyond the Nyquist frequency (resolution) of a 500 ppi scanner, then some
aliasing will still occur. For example, the Nyquist frequency of a 500 ppi scanner is 9.8
cy/mm, but if the fingerprint has frequency content out to 12 cy/mm, then some aliasing
will occur. Aliasing due to this cause is not normally visible, however, because of the
normally low energy content of fingerprint spectra at frequencies above 9.8 cy/mm, and
because the scanner's lens, which acts as a pre-sampling anti-aliasing filter (Nordbryhn,
1983), further suppresses the aliasing.

2.2 VISUAL EFFECTSOF ALIASING

The various rescaling techniques are described in the following sections, but it is
instructive to first show the visual effects of aliasing due to image rescaling, in both the
gpatial domain and spatial frequency domain. It will be seen that some imaging problems
arevisiblein the spatial domain, but others are more apparent and are quantifiable in the
Fourier spatial frequency domain. For reference, Figure 1 illustrates an ideal case of a
pure 5 cy/mm sine wave sampled at 500 ppi, where the Nyquist frequency equals 10
cy/mm. Thisideal case produces just three energy spikes in the Fourier transform
magnitude frequency domain. Theintensity of the center spike is proportional to the
average gray level of the sine wave, the locations of the two side spikes along the
frequency axis (symmetrical around center spike) correspond to the spatial frequency of
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the sine wave, and the intensity of aside spike is proportional to the peak-to-valley
contrast of the sine wave.

frequency spectrum
of sine wave

5 cy/mm sine wave

|| ||||| || Fourier transforml
1

-10 -5 0 5 10 cy/mm

Figure 1. Ideal Frequency Spectrum of Pure Sine Wave

Figure 2 illustrates upward and downward rescaling to 500 ppi, via decimation and
interpolation, of sine wave targets scanned on real scanners, and compares these to a non-
rescaled scan originally obtained at 500 ppi. The left sidein Figure 2 shows the images of
10, 8, 6, 5, and 4 cy/mm sine waves for each case and the adjacent right side shows the
same sine wave images with the frequency spectrum for each sine pattern. Decimation,
bi-linear interpolation, and the frequency spectraviathe Fast Fourier Transform (FFT),
were computed using a commercial image processing software package!. Banding seen on
a sine pattern shows up as secondary energy spikes in the Fourier domain, indicative of
aliasing. The cause of the rays emanating vertically from the energy spikes was identified
experimentally; these were found to be due to a small but steady increase in average gray
level from top to bottom of each sine wave pattern on the target itself, combined with a
small, but non-zero skew angle (<1°) between the scanner detector array and axes of the
sine target being scanned. These small gray scale "wedging” and skew effects are not
visible in the spatial domain.

A description of each of the six cases presented in Figure 2 follows. Note that all of the
figures containing images (Figures 2, 3-8, and 12) are availablein their original softcopy
form for more detailed assessment?.

Rodh - Thisis the image from a Lenzar scanner operating at a true 500 ppi (Sine scan
supplied by the FBI); it typifies a good result on areal scanner, close to the ideal case
illustrated in Figure 1. The sine waves are 'clean’, in that no aliasing artifacts are visible.

1 Media Cybernetics MS-DOS program: ImageProPlus (v2.0) was used; this software computes the
logarithm of the FFT spectrum magnitude for display purposes.
2 Full resolution softcopy versions of Figures 2, 3-8, and 12 are available.
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The predominant energy spikes in the frequency spectra occur at the single frequency
corresponding to each sine wave's frequency, although some weak secondary spikes also
do occur. These secondary spikes could be the result of weak sine wave harmonicsin the
target itself, due to the difficulty of manufacturing distortionless, 100% pure, continuous
tone, sine wave targets on photographic paper.

Ricoh - Thisis an image from a Ricoh model 1S-60 scanner operating at 600 ppi, which
was then decimated to the 500 ppi image shown (500 ppi sine image supplied by FBI).
Banding is very noticeable at 10, 6, and 5 cy/mm and the corresponding frequency spectra
have severa secondary energy spikes, all indicative of aliasing. The frequency spectra
also have additional energy spikes near the top and bottom edges. These indicate another
periodic pattern is overlaid on the basic sine wave pattern, but in a perpendicular
direction. Measurementsindicate that this overlaid pattern has a 7.9 cy/mm frequency,
corresponding to 2.5 pixels or 2.5 scan lines per period. Thisanomaly may be caused by
aperiodic variability in the Ricoh's one-dimensional scanning operation, or may be the
result of post-scan processing that used some variant of straightforward decimation.

Eikl - Our in-house Eikonix model 1412 scanner was set up to scan at 600 ppi and the
resulting image was scaled down to 500 ppi using simple decimation. Note that the
banding in the sine waves and the occurrence of secondary energy spikes in the frequency
spectra are nearly identical to the Ricohimage (except for the off-axis Ricoh spikes). The
banding and secondary spikes, taken together, are the typical result obtained when 6:5
decimation is applied to a sine wave image.

Eik2 - The same 600 ppi scanned image used to generate Eikl was used to generate this
500 ppi image using bi-linear interpolation. Note that banding disappearsin the sine
patterns although some weak secondary energy spikes still occur in the frequency spectra
of the 10 and 8 cy/mm sine patterns. Thisimpliesthat some aliasing is still present, but
not enough to be noticeable in the spatial domain. The sine patterns ook very similar to
the non-rescaled 500 ppi images in Rodh.

Eik3, Eik4 - The Eikonix was set up to scan at 300 ppi. Eik3 and Eik4 represent the
scanned image scaled upward to 500 ppi viareplication and bi-linear interpolation,
respectively. The sine patternsin both images have very low contrast, banding is seen on
Eik3 at 6 and 5 cy/mm, and many secondary energy spikes occur in the frequency
spectra, indicative of strong aliasing.






Eik2

interp 6:5

Eik3
dec| 3:5

Eikd

interp 3:5

Figure 2. Sine Wave Images Rescaled to 500 ppi by Downward and Upward Rescaling
Techniques
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SECTION 3

RESCALING DOWNWARD IN RESOLUTION VIA INTERPOLATION

3.1 INTRODUCTION

It will be seen in Section 4 that rescaling downward in resolution via nonuniform
decimation (e.g., 600 to 500 ppi) results in unsatisfactory image quality and periodic loss
of geometric integrity. It will be seenin Section 5 that rescaling upward in resolution
(e.g., 300 to 500 ppi), by any method, results in unacceptable image quality. Thisleaves
rescaling downward in resolution viainterpolation as the remaining practical possibility
when rescaling is necessary. Fortunately, as will be seen in this section, downward
interpolation rescaling isin fact an acceptable fingerprint image rescaling technique.

Several attributes of arescaling algorithm need to be evaluated before selecting it. These
relate to image quality, in terms of the appearance of image artifacts, the measurement of
the MTF, and the application of other objective image quality measures. In addition,
image integrity (“geometric accuracy") isimportant, and algorithm implementation also
needs to be considered, i.e., computational complexity and memory requirements. Itis
noteworthy that the original image may be satisfactory in all of these areas while the
down-sampled image may be deficient in one or al of these areas. The remainder of this
section explores these attributes for the application of downward rescaling via
interpolation, with the conclusion that a number of specific interpolation techniques are
acceptable for usein the |AFIS fingerprint environment.

Typical parameter values for the interpolation functions were chosen for the evaluations,
but an exhaustive optimization study was not performed. The intent was to present a
variety of usable techniques and give some indication of usable and unusable parameter
setting values. Although true optimization of each technique was beyond the scope and
purpose of this study, a group of candidate 'good' techniques with useful starting
parameter values can be ascertained from the information given in this section.

3.2 RESCALING CONSIDERATIONS

If the pixelsin an image are thought of as points on a surface (where the pixel gray level
value denotes height), then image rescaling can be thought of as reconstructing the
continuous surface from those points, followed by resampling the surface at the new
scale. The reconstruction process can be eliminated only when the input resolution isan
integer multiple of the desired output resolution (e.g., 600 ppi input and 300 ppi desired
output resolution), because the output pixelswill then coincide exactly with the locations
of the input pixels. Thisisthe case for uniform decimation.

The reconstruction process is typically accomplished by applying an interpolation
function to the original image. The subsequent resampling process is the same for any
given interpolation function; the reconstructed image is sampled uniformly to obtain the
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final image at the desired scale. Note that the choice of the interpolation function affects
the appearance of the final, rescaled image, but the resampling process is completely
determined by the input and output resolutions. Therefore, our discussion of rescaling
will focus on the interpolation functions used in the reconstruction step.

321 OneDimensional Versus Two-Dimensional Analysis

In the literature, most reconstruction algorithms are presented for one-dimensional (1-D)
signals [Crochiere and Rabiner, 1983]. Animageis (obviously) atwo-dimensional (2-D)
signal. The question then is, how should a given 1-D interpolation function be
implemented in 2-D? One possibility isto implement a 2-D circularly-symmetric
function based on the 1-D function. Distances along the 1-D function's abscissa axis
would become Euclidean distancesin the 2-D function. Certain 2-D circularly-symmetric
functions (such as Gaussians) can be separated into 1-D functions, allowing first a1-D
pass over the rows of an image, then a 1-D pass over the columns (or vice versa). Such
separable functions simplify the computational requirements of a 2-D interpolation
function. Most functions, however, are not separable and, if they are to be used, the full
2-D functions must be implemented.

A second guestion concerning the 2-D implementation of an interpolation function is the
origina intent of the 1-D function. Many 1-D interpolation functions, especialy those
based on the sinc function

sinc(X) = (sin TX)/Tx xz0
sinc(x) =1 x=0

are designed such that, when the function is centered on an original input samplein a
regularly-spaced set of samples, the function is zero-valued at all samples except the one
at the center of the function, where the value of the function isunity. The interpolation
function thus passes exactly the value of an input sample on which it is centered. If the
function is not centered on an input sample, then its output is composed of contributions
from severa surrounding input samples. If a2-D circularly-symmetric interpolation
function is formed from such a 1-D function, then the 2-D function will be zero-valued at
input samples directly horizontal and vertical from the sample at the function's center,
but the function will be non-zero at other input samples. Thus, the 2-D interpolation
function will not pass exactly the value of a sample on which it is centered.

Because of these two considerations, al of the interpolation functions mentioned in
Section 3.3 are described as 1-D functions that are implemented in 2-D in terms of a pass
over the columns followed by a pass over the rows (or, equivaently, rows followed by
columns). Three of these functions have straightforward implementations directly in 2-D:
Decimation, Nearest Neighbor, and Bi-Linear Interpolation [Wolberg, 1992, page 59].
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3.3 INTERPOLATION FUNCTIONS

Twelve different interpolation functions, most with arange of parameter values, were
applied to the case of rescaling a 600 ppi scanned image to 500 ppi. These functions are
discussed in detail by Wolberg and the following discussion is derived from that work
[Wolberg, 1992]. Most of the functions can be expressed as an interpolation kernel h to
be convolved with the input image to obtain the output image. Because each of the
interpolation kernels discussed below is symmetric about its central point, an equivalent
method of determining an output pixel valueisto center the kernel in the input image at
the location of the output image, then sum the products of the input image samples and
the corresponding kernel values. Recall that the 1-D interpolation function should first be
passed over the columns of the input image to form an intermediate image, then passed
over the rows of the intermediate image to form the final, rescaled image (or vice versa).

For each interpolation function, the width of the sampling neighborhood is always chosen
to be odd so that the interpolation kernel is symmetric on each side of the central value.
Note that for some algorithms, particularly bi-linear interpolation, application of an
interpolation kernel may not be the most efficient implementation possible.

3.3.1 Decimation (Nearest Neighbor)

The ssimplest rescaling method isdecimation. Although decimation is not an interpolation
technique, it isincluded in this section for comparison purposes. The output imageis
obtained by using the ratio between the input and output resolutions to map input pixels
to output pixels. For resampling from 600 ppi to 500 ppi, decimation drops every sixth
row and every sixth column of pixels. For example, let fsoo(X, y) describe the pixel gray
level values of a 600 ppi image and fsgp(X, y) be the values of a 500 ppi image, where
pixels occur at integer values of x and y and where (0O, 0) denotes the upper left-hand
corner pixel. To convert the 600 ppi image to 500 ppi by decimation, the value of each
pixel at (X, y) in the 500 ppi imageis

fsoo(X’ y) = feoo( [6X/50] @Y/s[)
where xjdenotesthe floor of x, the largest integer not greater than x.

Decimation can also be implemented by first decimating all of the rows, then the resultant
columns (or vice versa). Each row (or column) pixel valueis determined by
fooo(X) = feoo( X/ 5[). The two methods of implementing decimation are equivalent; for

the 600 ppi rescaled to 500 ppi case, both methods have the effect of dropping every
sixth row and every sixth column of pixels.

In nearest neighbor rescaling, each output pixel is assigned the value of the nearest input
pixel. For rescaling from 600 ppi to 500 ppi, the nearest neighbor agorithm has the effect
of dropping every third row and column out of every set of six. This conversion can be
expressed by the following equation, where again, (0, 0) is the upper left image pixel:
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Fooo(X Y) = feod TB(X + 3)/50- 3, [6(y + 3)/5[+ 3)

Note that nearest neighbor rescaling is essentially the same as decimation, with the only
difference being which pixel in each set of six is dropped.

The periodic dropping of pixelsinherent in nonuniform 6:5 decimation causes
discontinuities which result in unsatisfactory images. For example, when thisalgorithmiis
applied to a sine wave test target, the output image exhibits a banding effect at certain
frequencies where the dropped input sample causes a 'bunching' of the sine wave ridges.
Nonuniform decimation is explored in more detail in Section 4.

3.3.2 Bi-Linear Interpolation

Linear interpolation passes a straight line through each succeeding pair of pixels (in arow
or column) and determines intermediate values from the value of thisinterpolating line at
any given location. Thisline constitutes a first-degree interpolating polynomial. Pixel
valuesin the rescaled image that fall between the original pixels are intermediate values
along the line. When the straight-line approximation is applied in both the vertical and
horizontal directions, the method is known as bi-linear interpolation. For image rescaling,
linear interpolation can be applied first to the rows, then to the resulting columns, or the
interpolation can be applied in both directions at once. Although perhaps not the most
efficient implementation of the algorithm, linear interpolation can be expressed as a
convolution of the input image with an interpolation kernel h:

h(xX) =1 -« O<s|X<1
h(x)=0 1<

For the interpolation kernels presented herein, one unit of x is the pixel-to-pixel distance
inarow or column. Pixelsin the output (rescaled) image occur at integer values of x.

3.33 Cubic Convolution

Cubic convolution is a third-degree interpolation algorithm. It approximates asinc
interpolation function and is based on a general cubic spline. The kernel is composed of
piecewise cubic polynomials, where the pieces are continuous and have continuous first
derivatives. A set of constraints on the convolution kernel yield afamily of solutions
with one free parameter a. The resulting interpolation kernel his

ha(X) = (a+2)X - (a+ )P + 1 Os<1
ha(X) = ax]3 — 5ajx|2 + 8alx| — 4a 1<X<2
ha(x) =0 2<

Bounding the parameter a to values between —3 and 0 makes h resemble the sinc function.
If a=-1, the Slope of h matches that of the sinc function at x=1. Thischoice of a
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results in some high-frequency enhancement. If a=—0.75, the second derivatives of the
cubic polynomialsin h are both 1, yielding a continuous second derivativeat x=1. [An
interpolation function with a continuous second derivative can yield an output that is
smoother than that of one with a discontinuous second derivative.] Finaly, if a=-0.5,
the Taylor series expansion of the interpolating function agreesin as many terms as
possible with the original signal. Also note that, in the general case, cubic convolution can
result in output values outside of the range of the input values.

3.34 Two-Parameter Cubic Filters

By using adifferent set of constraints on the cubic convolution kernel, afamily of
solutions with two free parameters can be derived. An interpolation function in this
family of solutions is known as a two-parameter cubic filter and the parameterized
interpolation kernel h for such afilter is

hp,c(X) = [(-9b —6c— 12)XP + (12b + 6¢c— 18)xP + (2b + 6)] / 6 O<pK<1
hp,c(X) = [(-b — 6Q)X3 + (6b + 30C) P + (<120 —48))X| + (8o + 240)] /6 1< <2
Np,c(X) = 0 2< X

One choice for the free parametersis b = 0.33 and ¢ = 0.33, which has been shown to
yield good image quality [Schreiber 1985]. This function with parametersb = 1.5 and
¢ =—0.25 corresponds to a notch filter that suppresses the signal near the Nyquist
frequency that is most responsible for aliasing.

335 CubicB-Spline

Cubic B-spline interpolation is based on a piecewise cubic function that is continuous and
has continuous first and second derivatives. The B-spline interpolation kernel is

h(X) = [3x]B — 6Ix2 + 4] / 6 0spK<1
h(X) = [-X]B + 6[xR — 12|x| + 8] / 6 0spK<1
h(x)= 0 2<[X

Note that because h(0) # 1, h(1) # 0, and h(2) # 0, h is an approximating function that
passes near, but not through, the original pixel values. Thistypicaly has the effect of
attenuating the original signal.

3.36 Windowed Sinc Functions

According to sampling theory, the ideal interpolation kernel is the sinc function.
Unfortunately, this function has infinite extent and is therefore not a practical
interpolation function for usein rescaling. The sinc function can be truncated by
multiplying it with awindow function, thus requiring only the finite number of input
samples that fall within the extent of the window.
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The kernel for this class of windowed sinc functions has the form
h(x) = window(x) sinc(x)
We consider several possibilities for the window function window(x).
3.3.6.1 Rectangular Window

The simplest window function simply truncates the sinc function outside a certain range
of values and maintains its value within that range. This rectangular window is

Recta() =1 0<|x]<0.5a
Recta(X) =0  0.5a< X

The choice of the parameter a determines the width of the rectangular window. This
rectangular window, which sharply truncates the sinc function with no smoothing,
typically causes a grid effect in the rescaled image (see Figure 6) and can aso cause
ringing.

3.3.6.2 Hann and Hamming Windows

The Hann and Hamming windows both consist of a scaled and shifted cosine. The Hann
and Hamming window functions are both defined over N samples and are described by

Hann(x) or Hamming(X) = a + (1 — a )cos(2rxd/(N — 1)) X <(N-1)/2
Hann(x) or Hamming(x) = 0 otherwise

differing only in the choice of a, which is 0.5 for the Hann window and 0.54 for the
Hamming window. Some dlight ringing effects can arise from the Hamming window
because it is discontinuous at its ends.

3.36.3 Blackman Window

The Blackman window is similar to the Hann and Hamming windows, but contains an
additional cosine term to help reduce ripple in the Fourier spectrum of the function:

Blackman(x) = 0.42 + 0.5cos(21d/(N — 1)) + 0.08cos(41d/ (N — 1)) X < (N-21)/2
Blackman(x) = 0 otherwise

3.3.64 Kaiser Window

The Kaiser window is based on a zeroth-order modified Bessel function of the first kind
(1), with one free parameter o
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Kaiserq(X) = lo(B)/lo(ar) M <(N-1)/2
Kaiserq(x)= 0 otherwise

where,
B = af1-(24¢(N - 1))2]V2

If the Bessel function is not available in a mathematics package for implementation of the
Kaiser window, it can be approximated using the rapidly converging series

lp(n) =1+ z;(ll ggg

If a series expansion of the Bessel function isimplemented, careful examination of the
extent of the series needed to obtain satisfactory resultsis required.

The sophistication of the Kaiser window function grows with the parameter a, varying
from arectangular window at a = 0 to an approximation of the Hamming window at
a=>5.

3.3.65 Lanczos Window

The L-lobed Lanczos window is the central 1obe of a scaled sinc function that extends over
L lobes of a standard sinc function:

Lanczos, (X) = (sin(Tod/L))/(Td/l) O<|X<L
Lanczos (X) = 0 L <[

3.3.6.6 Gaussian Window

The Gaussian window is simply a Gaussian function of standard deviation o that is
truncated outside awindow of N samples. The Gaussian window is defined as

Gaussy(X) = /202

Note that the usual leading fraction of the Gaussian, 1/(c V(2m)), has been dropped so
that the value of the window function is unity at x = 0.

The rate of fall-off of the function is determined by the choice of 0. Because the tails of
the Gaussian diminish rapidly, the interpolation function can be truncated without
causing excessive ringing in the output signal once the value of the Gaussian is small.
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34 EVALUATION OF INTERPOLATION ALGORITHMS

The rescaling algorithms described in Section 3.3 were implemented in 'C' on a SUN
SparcStation 2. A commercial sine wave target, together with three inked right index
fingerprints of differing qualities were scanned at 600 ppi on an Eikonix model 1412
scanner as shown in Figure 3. Each algorithm was then individually applied to the

600 ppi image to rescale it to 500 ppi. The algorithms were evaluated in terms of
memory and computational requirements and the rescaled images were evaluated both
guantitatively and qualitatively. Specifically, the images were viewed on a CRT display
to detect any visible image artifacts and the Fourier transforms of sine wave patterns at
10, 6, and 4 cy/mm were displayed to detect aliasing. Also, the MTFs of the sine wave
target images were computed and an objective image quality measure (IQM) was applied
to the fingerprint images.

The evaluations of the rescaling algorithms in terms of computational requirements, IQM,
MTF, and visual artifacts are summarized in Table 1. Note that the IQM and MTF
measurements (described in Sections 3.4.4 and 3.4.5, respectively) are based on an image
obtained by a particular scanner and may be different with an image obtained from a
different scanner.
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Figure 3. Test Image: Commercial Sine Wave Target and Inked Fingerprints
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Table 1. Assessment of Rescaling Algorithms

Interpolation Technique Computational IQM [MTF meets [ Visual
requirements sSpec? artifacts
Decimation Minimal 39.3 |Yes Banding
Bi-Linear Interpolation Minimal 35.7 | Yes None
Cubic Convolution square, cube,
absolute value
a=-05 381 |Yes None
a=-0.75 394 |Yes None
=-1.0 40.7 | Yes None
Two-Parameter Cubic Filter | square, cube,
absolute value
b=0.33, c=0.33 36.0 | Yes None
b=15, ¢c=-0.25 29.9 | No—toolow | None
Cubic B-Spline square, cube, 32.3 |No—toolow |None
absolute value
Rectangular Windowed Sinc | sinc 334 |Yes Grid
width=7
Hann Windowed Sinc sinc, cosine
width=5 370 [Yes Grid
width=7 39.1 |Yes None
Hamming Windowed Sinc sinc, cosine
width="5 37.6 |Yes Grid
width=7 385 |Yes None
Blackman Windowed Sinc sinc, cosine
width=5 36.7 [Yes Grid
width=7 38.2 |Yes None
Kaiser Windowed Sinc sinc, square, square
root, Bessel
a=1.0, width=7 34.2 | No—toolow |Grid
a=20,width=7 359 |Yes Grid
a=3.0, width=7 374 [Yes Grid
a=3.0, width=9 400 [(Yes Grid
a=4.0, width=5 385 |Yes None
a=4.0,width=7 38.2 |Yes None
a=>5.0, width=5 37.7 |Yes None
a=>5.0, width=7 38.6 |Yes None
Lanczos Windowed Sinc sinc, sine
2 lobes 38.2 |Yes Grid
3 lobes 38.8 | Yes None
4 |obes 38,5 |Yes None
Gaussian Windowed Sinc sinc, power
s=0.5, width=7 42,9 [ No-too high | Grid
s=1.0, width=5 386 [Yes Grid
s=1.0, width=7 379 [Yes None
s=2.0, width=7 36.6 |Yes Grid
s=2.0,width=9 395 |Yes None
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3.4.1 Memory and Computational Requirements

The memory requirements for the decimation/nearest neighbor and bi-linear interpolation
algorithms are minimal, because both can be implemented in place with no temporary
storage required beyond that needed for the computations. The other algorithms require
intermediate storage ranging from enough memory to contain a partial row or column to
sufficient storage to contain a copy of the entire image, depending on the implementation
chosen. Thisintermediate storage might require larger precision than that of the input and
output image val ues themselves to permit sufficiently accurate computations. For
example, many of the interpolation functions described in Section 3.3 require floating-
point values for computations. To implement these functionsin 'C' on a SUN
SparcStation, four bytes of storage are needed for each intermediate value of type float,
while single-byte characters can be used to store the 8-bit image pixel values. In aworst-
case situation, an 8 x 8 inch fingerprint card scanned at 600 ppi would require

4800 x 4800 x 4 = 92,160,000 bytes of memory, assuming 4-byte floating-point numbers.

Rescaling algorithms also vary in their computational requirements. Decimation isavery
simple process requiring minimal computation, whereas some rescaling algorithms involve
the use of transcendental functions or other computationally-intensive methods.
Although the exact requirements depend on the implementations of the algorithms, the
functions (beyond addition, subtraction, multiplication, and division) required to
implement each algorithm are listed in Table 1.

3.4.2 Geometric Integrity

Asillustrated in Section 4.3, an image that has been rescaled by 6:5 decimation will
periodically not meet the scanner geometric accuracy requirement of the FBI'sIAFIS
Image Quality Specification (1QS) [FBI, 1994]. Because interpolation functions calculate
rescaled pixel values based on all of the original pixels, however, the proportions of the
underlying image are preserved during rescaling. The interpolation functions for image
rescaling, therefore, yield acceptable geometric accuracies.

3.4.3 Qualitative Image Quality Assessment

For at least one choice of parameters for each interpolation algorithm, a composite image
consisting of the rescaled sine wave targets (with Fourier transforms), the "high quality”
fingerprint, and agray patch (asindicated in Figure 3), was examined on a CRT display
and assessed qualitatively. The original 600 ppi composite test image is shown in Figure
4 and Figures 5-8 show the rescaled composite test images. Theseimages are availablein
their original softcopy form, see footnote 2. The fingerprint images in these composites
all contain more than the 200 gray levels required by the IAFIS 1QS requirement for
scanner "Gray Scale Range of Image Data’'.
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Qriginal (800 ppi)

Figure 4. Original 600 ppi Composite Test Image
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Figure 5. Composite Test Image Rescaled to 500 ppi
(Decimation and Bi-Linear Interpolation)
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Figure 6. Composite Test Image Rescaled to 500 ppi
(Cubic Convolution, Two-Parameter Cubic Filter, Cubic B-Spline,
and Rectangular Windowed Sinc)
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Figure 7. Composite Test Image Rescaled to 500 ppi
(Hann, Hamming, Blackman and Kaiser Windowed Sinc)
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Figure 8. Composite Test Image Rescaled to 500 ppi
(Lanczos, Gaussian Windowed Sinc, and Two-Parameter Cubic Filter)
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Asdiscussed in Section 4, 6:5 decimation is nonuniform and results in abrupt shiftsin the
signal value. These abrupt shifts create a banding effect in the sine wave patternsthat is
readily apparent at certain frequencies. In Figure 5, the banding can be seen in the sine
wave patterns at 6 and 5 cy/mm for decimation rescaling. The locations where the
columns and rows were removed are also apparent on the decimated fingerprint image,
appearing as truncated ridge edges.

An unacceptable grid pattern can occur in arescaled image if asinc function is applied
inappropriately for image interpolation. Gridding occurs when the contributions to the
interpolation of the outlying local maxima or minima of the sinc function are too strong.
These strong contributions can occur for one of two reasons. First, the sinc function can
be insufficiently smoothed to zero at the window edges, as can be seen in Figure 6 for the
Rectangular Windowed Sinc, which has no smoothing of the sinc function. Second, the
smoothing function can be too narrow to encompass enough of the local maxima and
minimato balance each other out. Figure 8 shows the gridding that occurs in the Gaussian
Windowed Sinc at ¢ = 0.5 and a neighborhood width of 7.

The effects of gridding and banding can also be seen in the Fourier transforms of the sine
wave patterns. Both of these effects are exhibited by strong secondary peaksin the
frequency spectra, occurring at spatial frequencies other than the sine wave's fundamental
frequency. Other deficienciesin the rescaling process, as well as deficienciesin the
scanner or original input, can often be detected in the frequency spectra; for example, refer
back to the discussion on gray level wedging in Section 2.2.

3.4.4 Objective Image Quality Assessment of Fingerprints

One can view the hardcopy fingerprint images directly in Figures 5-8 to get a qualitative
idea of the relative quality obtained by one rescaling technique versus another. A more
exact comparative visual assessment can be performed with side-by-side viewing of the
origina images on a CRT display. A good objective image quality measure, however,
could rank fingerprints at afiner level than is possible with visual assessments, and
without the variability inherent in subjective visual assessments. To thisend, an image
quality measure (IQM) previously developed by MITRE [Nill and Bouzas, 1992] was
applied to these fingerprint images, with the results shown in Table 1. Thisimage quality
measure is based on a summation of energy in an image's weighted, normalized power
spectrum, where the power spectrum equals the squared magnitude of the FFT of the
digital fingerprint, specificaly:
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o=t p=0.5

-1 2
IQM = =5 e:Zﬂpgms(el)w(p)A (TP)P(p.6)

where,
M2 = digital image sizein pixels
S(01) = directional image scale parameter (constant for this application)
W(p) = modified Wiener noise filter
A2(Tp) = MTF2 of human visual system (T=constant)
P(p,0) = normalized image power spectrum
p,0 = gpatial frequency in polar coordinates
(p = 0.5 cycles per pixel width = Nyquist frequency)

For this application, the IQM (version 4.2) was applied to a 256 x 256 pixel subimage
region encompassing the core of each rescaled image of the "high quality” inked fingerprint
(refer to Figure 3). ThisIQM was originally developed and optimized for military aerial
reconnaissance imagery and was applied to these fingerprint images "asis'. Optimization
of thisIQM for fingerprints potentially could include a number of modifications, such as
weighting different areas of the print (e.g., more weight to core area), adjusting the noise
filter parameters and human visual system filter peak location, determining/incorporating
differences between quality for visual evaluation versus machine evaluation (e.g., AFIS),
and modifying the current artifact detectors for fingerprint artifacts.

To first order, the IQM rates quality as afunction of image blur or edge sharpness. The
less blur or the sharper the edges, the more high frequency content in the power
spectrum, resulting in ahigher quality rating. Thus, it is no surprise that one of the
highest quality ratings was obtained from the 6:5 decimation rescaling case (IQM = 39.2),
because this image retains the frequency content and sharpness of the original 600 ppi
image scan, whereas the other 6:5 interpolation techniques smooth ("blur") the image to
varying extents. The IQM does not currently separate out aliased energy appearing
below the Nyquist frequency, so this energy adds to the non-aliased energy. Since the
decimation case has the strongest aliased energy, it also adds to the quality rating
magnitude for this case. The grid pattern exhibited in some of the interpolation images
(noted under "artifacts’ in Table 1) also creates false power spectrum energy which adds
to the respective images quality ratings. However, since the decimation and
interpolation-with-grid-pattern result in unsatisfactory fingerprint images, these are
discarded from the set evaluated with respect to the IQM.

In Table 2, the IQM is compared to visual quality assessments for the remaining 18
interpolation cases corresponding to satisfactory fingerprint images. The objective IQM
tracks the visual assessment of quality obtained from side-by-side viewing on a CRT
display. Infact, the visual assessments (albeit by a non-fingerprint expert) can do no
better than bin the images into one of three general quality levels.
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Table 2. Objective and Subjective Assessments of Fingerprint Image Quality

Interpolation Technique Objective Quality | Subjective Quality
(parameter values) (IQM) Assessment
Cubic Convolution (—1.0) 40.7

Gaussian Windowed Sinc (2.0, 9) 39.5

Cubic Convolution (-0.75) 39.4

Hann Windowed Sinc (7.0) 39.1

Lanczos Windowed Sinc (3.0) 38.8

Kaiser Windowed Sinc (5.0, 7) 38.6

Lanczos Windowed Sinc (4.0) 38.5 BEST
Kaiser Windowed Sinc (4.0, 5) 38.5

Hamming Windowed Sinc (7.0) 38.5

Kaiser Windowed Sinc (4.0, 7) 38.2

Blackman Windowed Sinc (7.0) 38.2

Cubic Convolution (-0.5) 38.1

Gaussian Windowed Sinc (1.0, 7) 37.9

Kaiser Windowed Sinc (5.0, 5) 37.7

Two-Parameter Cubic Filter (0.33, 0.33) 36.0 MEDIUM
Bi-Linear Interpolation 35.7

Cubic B-spline 32.3 WORST
Two-Parameter Cubic Filter (1.5, —0.25) 29.9

('No-artifact' interpolation rescaling cases.)

The IQM values measured from the fingerprint images are also in agreement with the
MTFs measured from the sine wave images, as shown in Figure 9. Thus the power
spectrum-based image quality measure can be usefully applied to the objective

assessment of fingerprint quality.
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Figure 9. MTFs Associated with Interpolation Methods Not Exhibiting Visual Artifacts

3.4.5 Objective Image Quality Assessment viaMTF

The MTF computed from the 500 ppi rescaled sine wave targets must fall within specified
ranges at certain frequencies, as described in the FBI's QS requirements for fingerprint
scanners [FBI, 1994]. The MTF was computed from the 500 ppi sine wave images as
rescaled by each of the interpolation algorithms, using the MITRE-devel oped sine wave
MTF computer program [Nill and Paine, 1994], version 2.2. Theresults of these tests are
reported in Table 1. Figure 9 shows the M TFs associated with the 18 interpolation
methods that did not exhibit visual artifacts; all but two of which meet the lAFIS 1QS
scanner MTF requirement [exceptions: cubic B-spline and two-parameter cubic filter

(1.5, -0.25)].

Aslisted in Table 1 and shown graphically in Figure 10, most of the 13 interpolation
methods that do exhibit unsatisfactory visua artifacts (gridding or banding), also are
within the upper and lower bounds of the spec MTF. For the interpolation gridding
cases, thisis partly due to the fact that the MTF analysis program performs some
amount of noise filtering (e.g., by row averaging). When such visual artifact cases occur,
however, either the "signal to noiseratio” or the "output gray level uniformity” 1QS
scanner requirement will most likely not be met. Also, as discussed in Section 6.2,
implementation of arobust alias/artifact detector would flag these unsatisfactory cases.
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Figure 10. MTFs Associated with Interpolation Methods Exhibiting Visual Artifacts

3.5 Implementation Details

Although the interpolation functions described in Section 3.3 can be implemented in a
straightforward manner, certain considerations should be kept in mind to yield
satisfactory results while minimizing the computation and storage required.

Several of the functions described can produce pixel values that lie outside the range of
values found in the original image. For these functions, the output values must be limited
to the appropriate range. For all methods (except nearest neighbor and decimation),
floating point results must be rounded or otherwise converted to integer values for the
final output image.

One possible implementation of the 1-D interpolation functions is Fant's resampling
algorithm, which is described by [Wolberg 1992, page 153]. This, or adifferent
implementation, can be used to pass the 1-D functions horizontally, then vertically (or
vice versa) over an image to rescaeit.

With arescaling from 600 ppi to 500 ppi, the output image will be smaller than the input
image. Therefore, if separate horizontal and vertical processing steps are implemented, it
is possible to store the intermediate results back into the original image space after
processing each full row or column. However, better results may be obtained if the
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precision of the intermediate results is higher than that of the original image. In this case,
more space for the storage of intermediate resultsis required.

Because each interpolation function mentioned above has limited extent, neighborhood
row and column passes can be performed to determine each output pixel. With this sort
of implementation, no intermediate storage is required for full image rows or columns, but
storageis required for the square neighborhood that the function covers and for the output
image. [The agorithm cannot overwrite the input values as the output values are
determined because the input values are needed in a neighborhood around each output
value to be calculated.]

Most of the methods described above use pixel values on either side of an output pixel to
determineitsvalue. Thereisthen the question of what should be done at the image edges.
If the pixel values at the edges of the input image are replicated as needed by the
interpolation function being applied, then the output image will change smoothly near the
edges. If zeros are instead assumed outside of the input image bounds, a harsh edge effect
may be exhibited.

For sinc-based and sinc-like interpolation functions, the choice of extent of the function is
important. For most of the functions, awidth of n =5 can yield uneven results in smooth
portions of the image due to large contributions from the first side lobes of the sinc, which
are negative. Higher values of n tend to ameliorate this effect, though the choice of n
depends on the interpolation function being used.

Some of the interpolation kernels require rather intensive computations. However, for a
given choice of input and output resolutions, there are a finite number of kernel values,
which repeat. These repeated values can be cal culated once and stored for use as needed.
For example, if the input resolution is 600 ppi and the output resolution is 500 ppi, then
the interpolation function valuesin arow or column will repeat every 5 output pixels.
Thisis easy to see when one notes that the initial output pixel isin exactly the same
position asthe initial input pixel. There are atota of five distinct function positions
before the pattern repeats with the input and output pixels being once again aligned.

3.6 Conclusions

Many interpolation algorithms are available for rescaling an image, and a number of these
were explained and evaluated in this section. It has been demonstrated that parameter
settings for an algorithm that result in the appearance of agrid in the rescaled output are
not acceptable. Also, any algorithm resulting in an MTF that falls significantly outside
the IAFIS QS requirements range is not acceptable. Certain specific algorithms are also
deficient. Decimation/nearest neighbor rescaling, because of the banding effect obviousin
the sine wave targets, is not satisfactory. Two interpolation functions, the cubic B-spline
and the two-parameter cubic filter with b = 1.5 and ¢ =-0.25, fall clearly below the MTF
requirement range. Gaussian windowed sinc interpolation with s = 0.5 exhibits gridding at
any neighborhood width because the Gaussian window is too narrow. The suitability of
other algorithms depends on the choices of parameters used to implement them. The
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parameter choices, in turn, depend on design trade-offs in hardware and software, so no
one algorithm can be deemed best for al situations. Often, an algorithm will not be
acceptable with one set of parameters, but will be acceptable with another. The MTF of
the algorithm, the visual quality of the output, and memory and computational
requirements must al be considered when choosing arescaling algorithm. The basic
conclusion, however, is that there are anumber of viable interpolation techniques that can
be applied to downward rescaling of fingerprints which result in | AFIS-acceptable images.
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SECTION 4

RESCALING DOWNWARD IN RESOLUTION VIA DECIMATION
(NEAREST NEIGHBOR)

Decimation reduces the size and resolution of an image by simply removing rows and
columns of pixels; itistherefore limited to rational number size reductions. For example,
a two-to-one decimation (denoted in this document as 2:1) removes every other row and
every other column, producing an image that is half the size. Decimation is often utilized
in downward rescaling because it is the simplest rescaling technique, with almost no
computational burden or extra computer memory requirements. Nearest neighbor
rescaling is equivalent to decimation, the only difference is in the specific rows and
columnsthat are removed to reduce the size and resolution. Aswill be seen in this
section, however, the type of decimation that would most likely be applied to rescale to
500 ppi, known as nonuniform decimation (e.g., rescaling from 600 ppi to 500 ppi),
results in unsatisfactory fingerprint images.

4.1 UNIFORM DECIMATION

There are actually two types of decimation that have drastically different effects on the
quality of the down-sampled signal.

Thefirst, well understood type is uniform decimation , for which the decimation is
achieved by keeping every Mth sample of asignal. Examples of this type of decimation
is2:1, where every other sample is retained in the resampled signal, and 3:1, where every
third sampleisretained. All uniform decimations can be reduced to the annotation form
M:1 decimation, where M is an integer, by dividing both sides of the colon by the same
value, e.g., 500:250 decimation reduces to the 2:1 decimation case by dividing both sides
by 250. Thistype of decimation can be simply modeled as having sampled the signal at
the resolution desired in the first place. The fact that extra samples were collected
originally has no effect on the resulting resampled signal, except that there may be a
difference due to the pixel integration size of the sampling system. Typically, the
decimated signal will appear sharper than asignal produced by the lower resolution
system at the desired sampling rate due to the effectively smaller pixel size of the higher
resolution system. Uniform decimation does not cause aliasing or other adverse effects on
image quality, but it is limited to those cases of decimation that can be reduced to the
form M:1, such as 1000 ppi to 500 ppi, or 500 ppi to 250 ppi decimation.

4.2 NONUNIFORM DECIMATION
In order to achieve 500 ppi from a 600 ppi scanner by decimation, however, the second
type of decimation, termed nonuniform decimation, is required. Nonuniform decimation,

where every Mth pixel isremoved (rather than retained) from the original signal, does
have objectionabl e properties with respect to image quality. Decimation of this type can
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be denoted as M:N decimation, where M=N+1 (e.g., 6:5 decimation)3. Nonuniform
decimation produces the desired number of samples per signal length, but the decimated
signal actually consists of bands of the signal sampled at the higher resolution, interrupted
by abrupt shiftsin the signal. Figure 11 illustrates a 6:5 decimation on a sampled sine
wave. In thisdecimation, groups of five samples, spaced apart by one sample, are
expanded and shifted together to yield the new digital waveform. Notice that the new
digital waveform does not closely match the overlaid original sinewave. Thisis primarily
caused by the abrupt shifts of the signal data values and the fact that the samples were
originally taken at the 600 ppi resolution within each group of five.

N\

/

600 ppi
sampling

decimated
to 500 ppi

600 ppi % 600 ppi f 600 ppi f 600 ppi & 600 ppi

abrupt abrupt abrupt abrupt
shift shift shift shift

Figure 11. Pixel Locations of Sine Wave Image Decimated from 600 to 500 ppi

When decimation is applied to image data, it is applied independently in the row and the
column directions. In the case of 6:5 decimation, 5x5 pixel blocks are shifted together by
one pixel in both directions, resulting in agrid of abrupt shifts. However, the visibility of

3 Categorizing decimation into two types, uniform and non-uniform, is a useful construct for most cases.
Note, however, that 2:1 decimation can fit either definition type. In practice, 2:1 decimation should be
categorized as uniform decimation, with its corresponding lack of image quality degradation.
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these abrupt artifacts is dependent on the image content. Although the abrupt shifts are
not apparent in high contrast, horizontal and vertical edges, they are visible as
“staircasing” on diagonal edges. Figure 12 compares the effect of 6:5 decimation to 6:5
bi-linear interpolation of atribar target scanned at 600 ppi on an Eikonix model 1412
scanner. In theinterpolated case the image is smooth with no abrupt changes, but in the
decimated case the abrupt shifts can be seen on the diagonal segments of the numbersin
thetarget. The decimated case has a sharper appearance than the interpolated case, but it
is because itslocal resolution is actually 600 ppi. These results are in agreement with
initial experimentation on the subject reported awhile ago at MITRE [Hwang, 1993].

41



42



i3 bi-hincar interpalation 615 dlecimation

Figure 12. 600 ppi Tribar Scan Rescaled to 500 ppi via Bi-Linear Interpolation and
Decimation






Referring back to Figures 2 and 5, it was seen that nonuniform decimation causes strong
secondary peaks in the Fourier spectra of sine waves, which isindicative of aiasing. To
further characterize the aliasing effects resulting from nonuniform decimation, a series of
pure digital sinewaves of specified frequencies and sampling resolutions was constructed,
and the Fast Fourier Transform (FFT) was then applied to these constructions.
Decimation was then simulated by dropping every Mth sample prior to the FFT. The
details of thisanalysis are given in Appendix B. The analytical approach in Appendix B
confirms the experimental resultsillustrated in Figures 2 and 5; i.e., that nonuniform
decimation causes strong harmonics (secondary peaks) to appear in the frequency
spectra. These harmonics are a characteristic of aliasing, which causes artifacts to appear
in the image itself.

4.3 DECIMATION EFFECT ON GEOMETRIC ACCURACY

The rescaling technique of 6:5 decimation may result in the IAFIS 1QS requirement for
scanner geometric accuracy not being met. The measurement of scanner geometric
accuracy is affected because the decimation will nonuniformly change the edge locations
of the Ronchi ruling bars of the test target used to verify IAFIS 1QS compliance. The test
target uses 0.500 mm wide Ronchi ruling bars spaced apart by 0.500 mm (1 cy/mm
Ronchi). At 500 ppi, the distance between consecutive bar centers would be 19.685
pixelsfor perfect geometric accuracy. In the case of a 600 ppi image reduced to 500 ppi
by 6:5 decimation however, the measured bar center-to-bar center distance can range
between 19.600 and 20.167 pixels, asillustrated in Figures 13 and 14.

The geometric accuracy requirement will not be met for a portion of the measurements
because the error caused by decimation is greater than the allowed + 1/3 pixel error (e.g.,
20.167 — 19.685 = 0.482 pixel error). Theimpact of this error is variable, however,
because not every area of every print block is tested, because the error is location-
dependent, and because 99% (not 100%) of all cases tested within a print block need to
meet the + 1/3 pixel error limit. Although the Ronchi target is also used to verify scanner
resolution, the measurement error due to decimation will be small compared to the
relatively large distance measured (0.4 to 1.25 inches), with the result that decimation
should not adversely affect the ppi resolution measurement.
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Figure 13. Decimation Applied to aPair of Ronchi Bars That Causes Maximum Separation
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Figure 14. Decimation Applied to aPair of Ronchi Bars That Causes Minimum Separation

4.4 IMPLICATIONS

Nonuniform decimation, such as decimation from 600 to 500 ppi, produces visible
aliasing-like artifacts. 1t needs to be determined through experimentation if these artifacts
are strong enough to significantly affect visual fingerprint matching, the performance of an
Automated Fingerprint Identification System (AFIS), or the performance of the IAFIS
Wavelet Scalar Quantization (WSQ) fingerprint compression algorithm. 1t would not be
surprising to find that the discontinuities caused by decimation adversely interact with
AFIS minutia detection algorithms or a transform-based lossy compression technique
such as WSQ, which is more tuned to operating on smooth surface input images.
Concerning the latter, we ran a small experiment which does indicate that thereisavisibly
adverse interaction between nonuniform decimation and WSQ.

The occurrence of image artifacts, coupled with the fact that nonuniform decimation can
result in the IAFIS QS geometric accuracy requirement not being met, indicates that this
rescaling technique s, at best, only marginally acceptable. Since various interpolation
rescaling techniques can be relied upon to consistently give acceptable image quality and
are not difficult to implement, there is no reason to take a gamble on nonuniform
decimation when rescaling is implemented.
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SECTION 5

RESCALING UPWARD IN RESOLUTION

A number of commercial scanners have atrue resolution, sometimes referred to in their
literature as "optical resolution”, of 300 or 400 ppi. These scanners can output a higher,
user-selected resolution, such as the |AFIS-required 500 ppi, by applying upsampling
rescaling algorithms to the scanned image. However, although an upward rescaled image
may be 500 ppi in a geometric sense, no upward rescaling processing method will
completely meet the IAFIS MTF requirement for image quality. Upward rescaling
invariably produces aliasing, which exhibitsitself in the image as false information, which
results in unacceptable image quality.

To illustrate this important point, the MTFs were measured from the 300 to 500 ppi
rescaled sine target images that are partially shown in Figure 2 as Eik3 and Eik4,
corresponding to replication (the opposite of decimation) and bi-linear interpolation
rescaling, respectively. [Itisknown that the Eikonix scanner, when operating at a true 500
ppi, does meet the IQS MTF requirement.] The sine target was also scanned on a
Mitsubishi SC-7500 flatbed scanner, which has atrue resolution of 400 ppi, and the MTF
was then measured from the Mitsubishi output image rescaled to 500 ppi viareplication
and via cubic convolution interpolation. [Cubic convolution interpolation is one of the
better interpolation techniques discussed in Section 3 (parameter value = —-1.0).] The
MTF results are shown in Figure 15, where it is seen that the 3.5 rescale cases fall far
below the QS minimum acceptable MTF curve.
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Figure 15. MTFsof 300 and 400 ppi Scanners Rescaled Upward to 500 ppi

For the case of 4.5 rescaling viareplication, however, the computed MTFsin Figure 15
almost meet the minimum acceptable MTF; the computed MTF of a higher quality 400
ppi scanner could conceivably meet it. However, the measured MTF would only meet or
nearly meet the minimum acceptable M TF because the aliasing present causes frequency
spectrum energy to be rearranged, resulting in a pure sine wave (at 400 ppi) becoming a
sine wave with harmonics (at 500 ppi). [Aliasing in this context is described further in
Appendix B.] Thelogic of the MTF software assumes the pattern being measured is a
pure sine wave, whereas the presence of harmonics will alter the peak and valley values of
the measured sine wave. In these cases, the computed MTF curve must be taken together
with observations of the rescaled sine pattern images and their Fourier spectra, and/or
taken together with alias detection algorithmic results, to get a complete picture. This
was done for the 4:5 rescaling case with the results summarized in Table 3.
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Table 3. Multi-Factor Analysis of Upward Rescaling of Sine Waves

4.5 Rescaling via 4.5 Rescaling via

Replication Cubic Convolution
Factor: | nter polation
MTF ~ meets spec below spec
Aliasing* 8 & 10 cy/mm 8 & 10 cy/mm
Visual - Sine Patterns significant banding down to | no banding

5 cy/mm
Visual - |FFT| of Sine strong secondary peaks secondary peak at
Patterns down to 4 cy/mm 10 cy/mm

* as detected by the 'dlias detector' in the MITRE sine MTF software version 2.2.

Table 3 indicates that 4:5 rescaling, either by replication or by cubic interpolation, does
not meet the total M TF requirement, which requires both a minimum acceptable
modulation at each frequency (as specified in the IQS) and no aliasing (as specified in the
QS Test Procedures). Visua assessment is good confirmation of these quantitative
results.

The unacceptability of upward rescaling also applies to the IAFIS 1000 ppi latent print
scanner. Thisis particularly worth noting because there are anumber of commercial
scanners on the market today that advertise "1200 ppi resolution”, when in fact they have
atrue resolution of 600 ppi and use interpolation to obtain 1200 ppi [thisfact is
sometimes noted in the fine print, and sometimes not]. Scanning at 600 ppi and rescaling
to 1000 ppi by interpolation would give equivaently poor results as that illustrated in
Figure 15 for the 300-to-500 ppi case.
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SECTION 6

IDENTIFYING AND DETECTING RESCALING

6.1 IDENTIFYING A GOOD RESCALING TECHNIQUE FOR IMPLEMENTATION

For those responsible for implementing a scanner rescaling technique, a good technique
can be identified when the 500 ppi rescaled image exhibits the following properties:

1) Thereisno visible gridding on uniform gray areas. Correspondingly, 1QS
requirements for signal to noise ratio and gray level uniformity are met.

2) The rescaled image meets the complete scanner MTF requirement in the IAFIS
IQS. Implicitly, the original, unscaled image output from the scanner (e.g., 600
ppi image) would also need to meet the MTF requirement.

3) No banding is visible on the rescaled sine wave images, indicating no

excessive aliasing. Correspondingly, the intensities of secondary energy spikesin
the Fourier domain would have to be 'small’, relative to the energy spike at the sine
wave fundamental frequency. Aliasing should not be detected by the MTF
analysis software, at any frequency up to and including the Nyquist frequency.

4) The computational load and memory requirements of the technique must be
compatible with the given computer hardware/software system utilized, and the
total system must meet operational performance requirements.

5) The geometric integrity must meet the |QS geometric accuracy requirement.

6.2 DETECTING THE PRESENCE OF AN UNACCEPTABLE RESCALING
TECHNIQUE

For those responsible for testing scanners, the visual appearance of gridding, banding, or
secondary spikesin the Fourier domain is a useful qualitative method for assessing the
suitability and acceptability of the rescaling, without actual knowledge of the technique
used to produce the images. These visual checks, along with the MTF measurement
itself, can be made with the IAFIS 1QS-specified sine wave target.

It isentirely possible, however, for the MTF range requirement to be met, and at the same
time, for the visual assessment results of the sine image to be ambiguous, improperly
interpreted, or not interpreted at all. For example, in the case considered in Table 3 for 4:5
rescaling, a better 400 ppi scanner using cubic convolution interpolation rescaling could
conceivably meet the minimum acceptable MTF and would not show any visible signs of
banding. Also, visual assessment of the sine patternsin the Fourier domain would show
nothing out of the ordinary or would be ambiguous. In such acase, only quantitative,
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objective, unambiguous assessment could detect the unacceptability of the rescaling
technique.

A partial solution to this objective assessment problem isincorporated in the MITRE-
developed sine wave MTF computer program [Nill and Paine, 1994, section 2.8]. The alias
detector in this program (versions 2.1 and 2.2) calls out the presence of aliasing if the
maximum peak in a given sine pattern’'s Fourier spectrum occurs at the wrong frequency.
The logic of this agorithm will detect cases of rescaling upward in resolution, such asthe
400 to 500 ppi case, as demonstrated in Table 3. Measurements on downward rescaling
(e.g., 600 to 500 ppi), however, indicate that for these cases secondary peaksin the Fourier
spectra are not as strong as the peak at the correct frequency location (not usually or not
ever - to be resolved). Theresult isthat the current alias detection algorithm does not
detect downward rescaling. To consider these cases, and also detect such artifacts as
'gridding’ caused by selection of the wrong interpolation parameter values, a more widely
applicable detector is needed, can be devel oped, and should be implemented.
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APPENDIX A
SAMPLING THEORY VIEW OF ALIASING

According to sampling theory, two basic conditions must be met in order to correctly
sample a continuous signal without producing aliasing. First, the signal must be
bandlimited. This means that the frequency content of the signal must be zero for al
frequencies higher than a specified frequency, f,,,,. Second, the sampling interval, A,
applied to the signal must be less than or equal to 1/(2f,,,). The frequency f,q isknown
asthe Nyquist frequency, which is equal to 1/(24).

Point sampling of a continuous signal can be modeled by multiplying the continuous
signal by a periodic train of impulse functions called the comb function [Bracewell, 1965].
If two functions are multiplied in the space domain, then the equivalent operation
performed between the Fourier transforms of the two functions is convolution; thus the
Fourier transform of the continuous signal is convolved with the Fourier transform of the
comb function. Asit turns out, the Fourier transform of a comb function is just another
comb function, but with reciprocal spacing of the impulse functions making up the
transformed comb function. Modeling of the sampling process in the two domainsis then
completed by recognizing that convolution of an impulse function with another function
simply recreates that function, centered at the impulse function location, and left/right
reversed ("reflected"). A train of impulse functions (the comb function) then re-creates
replicas of the signal's Fourier transform at each and every impulse function in the train.

Thismodel isillustrated in Figure A-1 for the example case of properly sampling asignal
band-limited to 10 cy/mm at 508 ppi (0.050 mm sampling increment), which does not
produce aliasing, as compared to undersampling the same signal at 339 ppi (0.075 mm
sampling increment), which produces aliasing as low as 3.8 cy/mm. It is these Fourier
domain replicas of the signal’s transform that impose the limitation of the Nyquist
frequency on a sampling system. If other replicas intrude upon the replica centered at
zero spatial frequency (the "baseband"” replica), then the sampled signal has been
corrupted and this corruption is called aliasing, as shown in Figure A-1.
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Figure A-1. Proper Nyquist Rate Sampling (Top Half) of a Signal Bandlimited to 10
cy/mm, and Improper Sampling Causing Aliasing (Bottom Half)
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APPENDIX B
MODELING DECIMATION

The Fast Fourier Transforms (FFT) of a series of pure digital sinewaves of specified
frequencies and sampling resolutions was computed. Decimation was then simulated by
dropping every Mth sample prior to the FFT. Since the FFT requires that the number of
samples equals a power of 2, the decimated sinewave was generated through multiple
periods until the condition was met. A series of FFTs of avariety of decimated
sinewaves shows atrend that is consistent with aliasing. Plots of the magnitudes of these
FFTsare shown in Figures B-1 through B-4. Each spike in the plots represents a
sinewave, whose frequency is given by its location along the frequency axis. Three input
sinewaves were used for each of the four plots, which show the results of no decimation,
2:1, 3:2, and 4:3 decimation. It isin comparing this progression of decimations that leads
to classifying the artifacts generated by nonuniform decimation as aliasing.

An approach for analyzing aliasing caused by decimation has been given in the literature
[Gori and Guattari, 1971]. Although the focus of that work was to devise methods to
properly reconstruct nonuniformly sampled signals, it also presented a mathematical
model that can be tailored to explain the aliasing resulting from decimation. Nonuniform
sampling is modeled as a periodic sampling containing N nonuniformly spaced samplesin
each period of NA, where A is the Nyquist sampling period of the signal. An intermediate
result of their analysis shows that 2N—1 replicas of the sampled signal’ s spectrum appear
in the baseband and that these replicas will appear centered around multiples of the
frequency fo=1/NA (refer to Figure A-1 for the meaning of replicas and baseband). The
series of plots shown in Figures B-1 through B-4 show exactly thistrend. Given that
these figures show just the positive half of the spectrum up to the Nyquist frequency of
the decimated resolution, each plot should show the original signal spectrum and N-1
additional replicas. For example, in 3:2 decimation, N=2 and one replicais expected. Each
of the four cases agrees with thisresult. In addition, these replicas are reflected around
multiples of the frequency fo. In the 3:2 decimation case, fg is equal to 7.87 cy/mm, and

the negative part of the spectrum appears reflected at the right of the plot. In the 4:3
decimation case, the replication of the entire spectrum is centered around 5.91 cy/mm.
These examples support theinitial hypothesis that nonuniform decimation causes aliasing
of the sampled signal.
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Figure B-2. Spectrum of Three Pure Sinewaves After 2:1 Decimation (300 ppi)
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Figure B-3. Spectrum of Three Pure Sinewaves After 3:2 Decimation (400 ppi)
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Figure B-4. Spectrum of Three Pure Sinewaves After 4:3 Decimation (450 ppi)
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Finally, as an additional check of the analytical modeling procedure, the procedure used in
generating Figures B-1 through B-4 was used to model the frequency spectrum of a

6 cy/mm pure sine wave sampled at 600 ppi and decimated to 500 ppi. Thiswasthen
compared to areal 6 cy/mm sine wave actually scanned at 600 ppi and decimated to 500
ppi (Eikl imagein Figure 2). Asshown in Figure B-5, the analytical model case compares
very well with the actual scan case, both show two secondary energy spikes indicative of
aliasing caused by the nonuniform 6:5 decimation.
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Curve A: |FFT]| of actual scanned 6 cy/mm sine wave decimated 6:5
Curve B: |FFT| of analytical model of pure 6 cy/mm sine wave decimated 6:5

Figure B-5. Spectrum of a6 cy/mm Sinewave After 600 to 500 ppi Decimation
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GLOSSARY

AFIS Automated Fingerprint Identification System
COTS Commercial Off-The-Shelf

CRT Cathode Ray Tube

cy/mm cycles per millimeter

FBI Federal Bureau of Investigation

FFT Fast Fourier Transform

IAFIS Integrated Automated Fingerprint Identification System
QM Image Quality Measure

QS Image Quality Specification

MTF Modulation Transfer Function

ppi pixels per inch

WSQ Wavelet Scalar Quantization

1-D One-Dimensional

2-D Two-Dimensional
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