MITRE Nanotechnology
Speaker Series

MITRE Nanosystems Group

8 February 2006
Nose-like Nanosensing Systems

Brigitte Rolfe
Nanosystems Group Leader
8 February 2006
Project Goal: Apply Advances in Nanotechnology to Improve Chem/Bio Sensing Systems

- Since the events of the Fall of 2001, developing better sensor systems for early detection of toxic agents has been of great importance to the nation.

- In working toward a solution to this problem, the Nanosystems Group is applying lessons learned from:
 - the natural nose and artificial noses
 - recent advances in nanometer scale devices

...to further the development of Nanosensing Systems with nose-like sensitivity, accuracy and reliability.

- **Nose-Like Nanosensing Systems could**
 - Perform ubiquitous sensing to secure airports and other public and private spaces
 - Provide ultra-small wearable sensors for soldier protection
 - Identify individuals by their specific chemical (odorant) signature
Why the Olfactory Model?

- Traditional “one-sensor-one-analyte” sensing is not effective for multiple target agents in uncontrolled environments
- Olfaction is a highly sensitive, selective, fast and reliable sensing system that works well in “noisy environments”
- Some examples of what the nose can do:
 - Human females can detect minute differences in male immunotype by smell
 - A moth can smell a single molecule of the moth pheromone ‘bombykol’
 - A bloodhound can pick up a 24 hour-old trail and identify the person
 - Rats need only one sniff (< 200 ms) to accurately discriminate odors*

Facts and dog graphic from the Olfaction website of T.Jacob, University of Cardiff, UK

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
MITRE Report Reviews & Proposes Designs for Nose-Like Nanosensors

Report presents:

- A review of natural olfaction
- Survey of artificial noses and their sensing technologies
- Discussion of existing nanosensors
- Designs for integration of nanosensors into sensing systems
Objectives of Presentation

To discuss:

- Goals of Nose-like Sensing R&D
- Highlights of the Physiology of Olfaction
 - Overview of Artificial Noses
 - R&D on Individual Nanometer-scale Sensors
- Next Steps Toward Nose-Like Nanosensor Systems
- Summary
Major Steps in Olfactory Processing

- Odor molecules make contact with the olfactory receptor (OR) neurons
- The signals from the OR neurons are sent to the olfactory bulb for pre-processing
- From the olfactory bulb, the signals travel to the olfactory cortex and to other regions of the brain

The Components of the Olfactory System
The Transduction Process

- Odor molecule binds with a G protein-coupled receptor on the surface of the cilium
- Odorant-receptor binding activates the G_{olf} protein inside the cilium
- G_{olf} activates AC
- AC catalyzes conversion of ATP to cAMP
- cAMP travels throughout the cell, opening ion channels in the cell membrane
- Flow of positive ions in and negative ions out reduces the potential across the membrane
- If depolarization reaches threshold, an action potential is generated

AC = adenylyl cyclase, ATP = adenosine triphosphate, CNG = cyclic nucleotide gated
AMP = adenine monophosphate, cAMP = cyclic

Graphic from T. Jacob website.

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
Early Processing in the Epithelium

In the Epithelium …

- Each OR neuron expresses a single receptor type
- Each receptor responds to a range of odorants with similar structures
- Incoming odorants may activate several different types of OR neurons
- All OR neurons of the same type send their axons to the same glomerulus in the olfactory bulb

Convergence of Axons to a Glomerulus

A Visualization of Axonal Convergence

P. Mombaerts and his group at Rockefeller U. used gene targeting technology to generate a strain of mice in which expression of a defined OR is coupled to an axonal marker.

Photo from: P. Mombaerts, Science, 286, 10/22/99
Signal Flow to the Olfactory Cortex

Olfactory Processing

- In the bulb, inputs from different ORs are segregated by type
- Activated glomeruli in the bulb provide a stereotyped map or "code" for the odorant
- In the olfactory cortex, individual cortical neurons may receive input from multiple ORs
- Signals reach multiple areas of the brain, resulting in another map of sensory information

Trace of Signal Flow from Nose to Brain

Linda Buck’s team at Harvard traced signals from two OR types, M5BL (blue) and M50BL (red) from the epithelium to the olfactory cortex

Odorant Identification Relies Upon Pattern Recognition and Stored Memories

- The particular combination of neurons that is activated by an odor provides a “code”

- To identify the odor, the code is compared with stored patterns in the brain

This odorant has four qualities: red, green, square, triangle
All receptors for any of these qualities are activated

A Model for Olfactory Coding

Graphic adapted from: Stuart Firestein, Nature, 413, 9/13/2001
Examples of Combinatorial Receptor Codes

<table>
<thead>
<tr>
<th>Hexanoic Acid</th>
<th>rancid, sweaty, sour, goat-like, fatty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hexanol</td>
<td>sweet, herbal, woody, Cognac, Scotch whiskey</td>
</tr>
<tr>
<td>Heptanoic Acid</td>
<td>rancid, sweaty, sour, fatty</td>
</tr>
<tr>
<td>Heptanol</td>
<td>violet, sweet, woody, herbal, fresh, fatty</td>
</tr>
<tr>
<td>Octanoic Acid</td>
<td>rancid, sour, repulsive sweaty, fatty</td>
</tr>
<tr>
<td>Octanol</td>
<td>sweet, orange, rose, fatty, fresh, powerful, waxy</td>
</tr>
<tr>
<td>Nonanoic Acid</td>
<td>waxy, cheese, nutlike, fatty</td>
</tr>
<tr>
<td>Nonanol</td>
<td>fresh, rose, oily floral, odor of citronella oil, fatty</td>
</tr>
</tbody>
</table>

Receptor Codes for Odorants with Similar Structures but Different Odors

Table from: B. Malnic, L. Buck, et al., Cell, 96, 5 March 1999
Summary:
Key Principles of the Olfactory Model

- Olfaction uses vast numbers of very small, densely spaced, sensing neurons
- Sensing neurons are non-specific sensors
- The sensing range of an individual neuron overlaps with those of other neurons
- Repetition of the same neuron many thousands of times increases likelihood of odorant binding and amplifies signal
- Odors are identified using a spatio-temporal combinatorial system, along with stored memories

Graphic from: P. Mombaerts, Science, 286, 10/22/99
Objectives of Presentation

To discuss:

- Goals of Nose-like Sensing R&D
- Highlights of the Physiology of Olfaction
- Overview of Artificial Noses
- R&D on Individual Nanometer-scale Sensors
- Next Steps Toward Nose-Like Nanosensor Systems
- Summary
Artificial Noses Make Use of the Key Principles of Olfaction

The Artificial Nose: An array of non-specific, cross-reactive sensors combined with an information processing system

Graphic adapted from:

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
Pattern Analysis for Artificial-Nose Data

- Signal Preprocessing, e.g. compensation for sensor drift, vector normalization
- Dimensionality Reduction, using Principal Component Analysis (PCA), Fisher’s Linear Discriminant Analysis (LDA), etc.
- Classification, e.g. artificial neural networks, parametric methods, partial least squares

Examples of Principal Component Analysis

Graphs from IBM Zurich Research Center Website

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
Taxonomy of Nose-like Sensors

Artificial Noses

Macro-Scale

Micron-Scale

Electro-chemical

Conductance-Based

Potentiometric

Mass-Change

Optical - Fluorescent

Nano-Scale

Still To Be Developed

Carbon Nanotubes

Nanowires

Nanobelts

Fluorescent Nano-beads

Still To Be Developed
The KAMINA: A Micro-Scale Tin-Oxide Artificial Nose

The KAMINA detects gases such as ammonia, benzene, carbon monoxide, and formaldehyde.

An Artificial Nose Using Carbon Black-Polymer Composites

- Sensing elements use carbon black as a conductive filler within a nonconductive organic polymer matrix
- When exposed to an odorant, a composite swells, resulting in a change in conduction
- The sensing properties can be changed easily by changing the carbon black/polymer composition
- Electronic noses using carbon black-polymer composites are in use for diagnosis of bacterial infections, and have been found to successfully detect lung cancer

Example of
A Silicon Olfactory System using ChemFETs

Key operational principle: molecular adsorption onto the gate alters its threshold voltage

Schematic Layout of Silicon Olfactory System
Uses ChemFETS, designed by researchers at the Universities of Leicester, Edinburgh, and Warwick

Graphic adapted from University of Leicester’s website at http://www.le.ac.uk/eg/tcp1/avlsi/
© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
A Micromechanical DNA Sensor

IBM’s Cantilever Array

Differential deflection of the cantilevers upon ligand binding provides molecular recognition

Oligonucleotide

Hybridization

Microfabricated Silicon Cantilevers

Each cantilever is 1 μm thick, 500 μm long, 100 μm wide, with a pitch of 250 μm, and spring constant of 0.02 N m⁻¹

Graphics adapted from:
Artificial Noses Based on High-Density Optical Arrays

- Thousands of microsphere sensors are dispersed across the face of an etched optical imaging fiber
- Interaction of odorant with fluorescent dyes yields a frequency shift in the returned signal
- Each bead is independently addressable through its own light channel
- Fiberoptic artificial noses have been demonstrated to detect land-mines

Graphic adapted from: M. Meusel, of Institut für Chemo- und Biosensorik, presented at Münster Biosensor Symposium Tübingen 2001
A Smart-Chip Chemical Microsensor

Diagram of the Microsystem Architecture

- Incorporates three different transducers, each with sensitive polymeric layers:
 - Mass-sensitive
 - Capacitive
 - Calorimetric

- On-chip control and monitoring of the sensor functions

- Commercial CMOS fab process: chip is 7x7 mm

For truly nose-like sensing, we must integrate nanometer-scale sensors into systems!

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
Objectives of Presentation

To discuss:

- Goals of Nose-like Sensing R&D
- Highlights of the Physiology of Olfaction
- Overview of Artificial Noses
- R&D on Individual Nanometer-scale Sensors
- Next Steps Toward Nose-Like Nanosensor Systems
- Summary
Selected R&D on Individual Nanosensors

<table>
<thead>
<tr>
<th>Type</th>
<th>Description</th>
<th>Researcher/Institute</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon Nanotube</td>
<td>Semiconducting-SWNT sense NH₃, NO₂ and H₂ by undergoing a conductance change</td>
<td>Hongjie Dai et al., Stanford University</td>
</tr>
<tr>
<td>Carbon Nanotube</td>
<td>SWNT show high sensitivity to oxygen or air, changing their electrical properties</td>
<td>A. Zettl et al., UC Berkeley</td>
</tr>
<tr>
<td>Nanowire</td>
<td>Silicon nanowires in solution sense streptavidin, biotin, etc. with conductance changes</td>
<td>Charles Lieber et al., Harvard University</td>
</tr>
<tr>
<td>Nanowire</td>
<td>Tin oxide nanowires sense O₂ and CO with conductance changes</td>
<td>Martin Moskovits et al., UC Santa Barbara</td>
</tr>
<tr>
<td>Nanobelt</td>
<td>Tin oxide nanobelts sense CO, NO₂ with a change in conductance</td>
<td>Wang/Georgia Tech Sberveglieri/Brescia, Italy</td>
</tr>
<tr>
<td>Nanobead</td>
<td>‘Almost’ nanometer-scale sensing beads used in optical sensors</td>
<td>David Walt, et al., Tufts University</td>
</tr>
</tbody>
</table>
Single-Walled Carbon Nanotubes (SWNT) as Gas Sensors

Dai’s group at Stanford tested semiconducting-SWNTs as nanosensors at room temperature: the nanotube diameter is about 1.8 nm

I-V curve before/after exposure to NH$_3$: decreased conductivity
Response time:
- 1.0% NH$_3$, approx 1 - 2 min
- 0.1% NH$_3$, approx 10 min

I-V curve before/after exposure to NO$_2$: increased conductivity
Response time:
- 200 ppm, approx 2 - 10 sec
- 20 ppm approx 1 min

Illustration and Graphs from:
Electronic Properties of Carbon Nanotubes Are Sensitive to the Environment

- Zettl’s group at UC Berkeley demonstrated that exposure to oxygen can cause changes in nanotube electrical resistance, thermoelectric power, and local density of states
 - Electrical resistance (R) changed by 10 to 15%
 - Thermoelectric power, \(S = \mu V/°K \), changes both in sign and magnitude
- The electrical properties of carbon nanotubes depend not only on diameter and chirality, but also on their gas exposure history

Graphs from A. Zettl et al., Science, 287, 10 March 2000
Silicon Nanowires (NW) as Chem/Bio Sensors in Solution

Lieber’s group at Harvard tested silicon NWs modified differently for each of four sensing operations:

- Discrete changes in pH levels from 2 to 9 caused stepwise increases in conductance.
- Biotin-modified NWs show a conductance increase in the presence of streptavidin, but the process is not reversible.
- Monoclonal antibiotin (m-antibiotin) binds reversibly with biotin, decreasing conductance.
- Calmodulin-modified NWs reversibly sensed Ca$^{2+}$ with a conduction decrease.

© All materials herein copyright 1997-2006 The MITRE Corporation, McLean, VA, unless otherwise attributed. All rights reserved.
Tin Oxide (SnO$_2$) Nanowire Gas Sensors

Moskovits’ group at UC Santa Barbara tested 60 nm diameter SnO$_2$ nanowires, at 250° C, as sensors for CO and O$_2$

Surface reactions essentially alter the electronic structure of the entire nanowire

Alternating pulses of CO and O$_2$ cause alternating increases and decreases in conductance

Semiconducting Oxide Nanobelts as Gas Sensors

Wang at Georgia Tech and Sberveglieri at U. Brescia, Italy, demonstrated that single-crystalline SnO$_2$ nanobelts undergo a change in conductance in the presence of CO, NO$_2$, and ethanol.

Illustrations from Z. Wang et al., Science, 291, 9 March 2001
Towards Nanometer-Scale Sensing Beads

- Sensing beads, about 300nm in diameter, are deposited in microwells on the surface of optical fibers
- Binding of a target agent produces a shift in wavelength of returned light
- These sensing systems, developed at Tufts Univ., detect nitroaromatic compounds similar to low-level explosives

2001 Sensitivity Test for TNT
Dog: 1 part per billion (ppb)
Tufts Optical Nose: 10 – 15 ppb

Illustration and Graph from: http://ase.tufts.edu/chemistry/walt/research/projects/Add_apps.htm
Objectives of Presentation

To discuss:

- Goals of Nose-like Sensing R&D
- Highlights of the Physiology of Olfaction
- Overview of Artificial Noses
- R&D on Individual Nanometer-scale Sensors

Next Steps Toward Nose-Like Nanosensor Systems

- Summary
Nose-Like Nanosensing: Where Are We Now?

- Micron-scale sensing elements have been developed and incorporated into small artificial noses
- Nanometer-scale devices demonstrated to function as gas sensors

... However, at this time, no nose-like sensing systems integrated on the nanometer-scale have been developed

- Some of the Challenges Remaining:
 - Complete characterization of sensing behavior of nano-scale devices
 - Precise placement versus random distribution of nanosensors?
 - Nanosensor system/microprocessor integration

- Useful Next Steps: Development and Integration of
 - Small number of differentially sensitized nanosensors
 - Microprocessor/processing algorithm into operational nose-like nanometer-scale sensing system
Elements of Nanotechnology for Enabling Novel Sensor Systems

In 2005, prototype ultra-small, ultra-dense nanomemory systems were successfully delivered to the Government.

Molecular Switches (Purple)

Nanowires (Orange)

~ 10,000 nm

~ 100 nm

Amazing Fabrication!

Building arrays with 10 to 20 nm “pitch” distance between the wires!

Heath et al. Science, 2003
Building upon Nanomemory Systems for Nose-Like Sensing

- This cross-bar array of nanowires is a nano-sensing system: each junction of 2 crossed nanowires forms a memory bit.
- The junctions of the nanowires are decorated with binding agents.
- Binding of a target agent at a memory location causes the memory bit to change from “0” to “1”.
- The set of memory bits reporting a change in status provide an identifier for the target agent.

Concept for an artificial nano-scale chem-bio sensing system.
A Proposal for a Nose-like Nanowire Sensing System

- Core of sensing element is SnO$_2$ nanowire, as demonstrated by Moskovits*
- Modify by coating the wires with a layer of SiO$_2$
- As demonstrated by Goschnick**, differential thicknesses of SiO$_2$ coatings over SnO$_2$ cause differences in conductivity patterns
- A system of such nanowires, combined with a heating element, should behave as an electronic “nano-nose”

*Moskovits et al., Advanced Materials, 17 June 2003
**Goschnick et al., IEEE Sensors Journal, June 2002
Objectives of Presentation

To discuss:

- Goals of Nose-like Sensing R&D
- Highlights of the Physiology of Olfaction
- Overview of Artificial Noses
- R&D on Individual Nanometer-scale Sensors
- Next Steps Toward Nose-Like Nanosensor Systems

Summary
Summary of Study in Nose-Like NanoSensing

- Great advances have been made recently in understanding the olfactory system, our best model for chem-bio sensing.
- Artificial noses with relatively small numbers of micron-scale sensors have been developed.
- Achieving sensitivity, selectivity and reliability like that of the nose, however, will require systems with large numbers of individual sensing elements.
- Only by integrating nanometer-scale sensing elements into sensing systems can we approach nose-like capabilities while maintaining very small form factors.

Truly “nose-like” nanosensing systems will increase homeland security, provide personal protection for the soldier, and enhance national intelligence capabilities!
Bibliography, First Page

Ajayan, P. et al., “Miniaturized gas ionization sensors using carbon nanotubes,”
Nature 2003, v 424, pp. 171-174

Dai, H. et al., “Nanotube Molecular wires as Chemical Sensors,”
Science 2000, v 287, pp. 622-625

Firestein, S., “How the olfactory system makes sense of scents,”
Nature 2001, v 413, pp. 211-218

Fritz, J. et al., “Translating Biomolecular Recognition Into Nanomechanics,”
Science 2000, v 288: pp. 316-318

Hagleitner, C. et al., “Smart single-chip gas sensor microsystem,”

IBM Research Center Zurich website:
Bibliography, Second Page

Workshop on Nanosensors for Nose-Like Sensing

At MITRE McLean: 4 & 5 April 2006

By Invitation Only

Please contact me at brolfe@mitre.org if you wish to be invited
Thank you for your attention!